精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线的参数方程为(为参数)。在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的极坐标方程为

1)求直线的普通方程和圆的直角坐标方程;

2)设圆与直线交于两点,若点的坐标为,求

【答案】1)直线l的普通方程为;圆C的直角坐标方程为;(2.

【解析】

1)由直线的参数方程消去参数可直接得到普通方程;由极坐标与直角坐标的互化公式,可直接得到圆的直角坐标方程;

2)将直线参数方程代入圆的直角坐标方程,结合韦达定理,根据参数的方法,即可求出结果.

(1)由直线的参数方程(为参数)得直线的普通方程为

,,即圆的直角坐标方程为

(2)将直线的参数方程代入圆的直角坐标方程,得

由于>0,

故可设是上述方程的两个实根,

所以

又直线过点P(3,)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数

(Ⅰ)当时,求证:

(Ⅱ)如果恒成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义全集的子集的特征函数,对于两个集合,定义集合,已知集合,并用表示有限集的元素个数,则对于任意有限集的最小值为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱台的底面是正三角形,平面平面.

(1)求证:

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人各进行次射击,甲每次击中目标的概率为,乙每次击中目标的概率

(Ⅰ)记甲击中目标的次数为,求的概率分布及数学期望;

(Ⅱ)求甲恰好比乙多击中目标次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为自然数1234的一个全排列,且满足,则这样的排列有_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是( )

A. ”是“”成立的充分不必要条件

B. 命题,则

C. 为了了解800名学生对学校某项教改试验的意见,用系统抽样的方法从中抽取一个容量为40的样本,则分组的组距为40

D. 已知回归直线的斜率的估计值为1.23,样本点的中心为,则回归直线方程为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数,若函数的图像上有且只有两对点关于轴对称,则的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某创业投资公司投资开发某种新能源产品,估计能获得10万元到100万元的投资收益,现准备制定一个对科研课题组的奖励方案:奖金(单位:万元)随投资收益(单位:万元)的增加而增加;奖金不超过9万元;奖金不超过投资收益的20%.

(1)若建立函数模型制定奖励方案,试用数学语言表述该公司对奖励函数模型的基本要求,并分析函数 是否符合公司要求的奖励函数模型,并说明原因;

(2)若该公司采用模型函数作为奖励函数模型,试确定最小的正整数的值.

查看答案和解析>>

同步练习册答案