精英家教网 > 高中数学 > 题目详情
20.求下列函数的最大值
(1)y=x(1-2x)(0<x<$\frac{1}{2}$);
(2)y=x$\sqrt{3{-x}^{2}}$(0<x<$\sqrt{3}$).

分析 (1)由0<x<$\frac{1}{2}$,可得1-2x>0,y=x(1-2x)=$\frac{1}{2}$•2x(1-2x),由基本不等式即可得到最大值;
(2)由0<x<$\sqrt{3}$,可得y>0,y=x$\sqrt{3{-x}^{2}}$=$\sqrt{{x}^{2}(3-{x}^{2})}$,运用基本不等式即可得到最大值.

解答 解:(1)由0<x<$\frac{1}{2}$,可得1-2x>0,
y=x(1-2x)=$\frac{1}{2}$•2x(1-2x)≤$\frac{1}{2}$•($\frac{2x+1-2x}{2}$)2=$\frac{1}{8}$,
当且仅当x=$\frac{1}{4}$时,取得最大值$\frac{1}{8}$;
(2)由0<x<$\sqrt{3}$,可得y>0,
y=x$\sqrt{3{-x}^{2}}$=$\sqrt{{x}^{2}(3-{x}^{2})}$≤$\sqrt{(\frac{{x}^{2}+3-{x}^{2}}{2})^{2}}$=$\frac{3}{2}$,
当且仅当x2=3-x2,即x=$\frac{\sqrt{6}}{2}$时,取得最大值$\frac{3}{2}$.

点评 本题考查函数的最值的求法,注意运用基本不等式,以及满足的条件:一正二定三等,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知命题p:实数x满足不等式组$\left\{\begin{array}{l}2<{2^x}<8\\{x^2}-6x+8<0\end{array}\right.$命题q:实数x满足不等式(x-1)(x+a-12)≤0(其中a∈R).
(Ⅰ)解命题p中的不等式组;
(Ⅱ)若p是q的充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=x3+bx2+d在区间(0,2)内为减函数,且2是函数的一个零点,则f(1)的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.直线l过A(-a,8)、B(2,2a)两点,且kAB=12,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某班50位同学周考数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].
(1)求图中[80,90)的矩形高的值,并估计这50人周考数学的平均成绩;
(2)根据直方图求出这50人成绩的众数和中位数(精确到0.1);
(3)从成绩在[40,60)的学生中随机选取2人,求这2人成绩分别在[40,50)、[50,60)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2sinxcosx+2cos2x(x∈R).求f(x)的最小正周期,并求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,若sinAsinB十cosAcosB=1,则它是(  )三角形.
A.直角B.等腰C.等腰直角D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,sinA+cosA=$\frac{\sqrt{2}}{2}$.
(1)求sinAcosA
(2)求sinA-cosA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.不等式x+y>2所表示的平面区域是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案