精英家教网 > 高中数学 > 题目详情

【题目】已知mR,命题p:对任意x[01],不等式x22x1≥m23m恒成立,命题q:存在x[11],使得m≤2x1

)若命题p为真命题,求m的取值范围;

)若命題q为假命题,求m的取值范围.

【答案】(Ⅰ)1≤m≤2;(Ⅱ)m1

【解析】

(Ⅰ)要使不等式恒成立,则需满足,先求函数的最小值,再解关于的不等式即可;

(Ⅱ)先求命题q为真命题时m的范围,再取相反的范围即可

(Ⅰ)若命题p为真命题,即x[01],不等式x22x1≥m23m恒成立,

fx)=x22x1=(x122,则fx)∈[2,﹣1],即m23m2,解得1≤m≤2

(Ⅱ)若命題q为真命题,存在x[11],使得m≤2x1,令gx)=2x1

gx)∈[31],∴m≤1

∴¬q为:m1

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】从某工厂的一个车间抽取某种产品件,产品尺寸(单位:)落在各个小组的频数分布如下表:

数据分组

频数

(1)根据频数分布表,求该产品尺寸落在的概率;

(2)求这件产品尺寸的样本平均数;(同一组中的数据用该组区间的中点值作代表)

(3)根据频数分布对应的直方图,可以认为这种产品尺寸服从正态分布,其中近似为样本平均值近似为样本方差,经过计算得,利用该正态分布,求.

附:①若随机变量服从正态分布,则;②.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

)当时,求的单调区间;

)若函数图象在上有两个不同的交点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知在极坐标系中,点是线段的中点,以极点为原点,极轴为轴的正半轴,并在两坐标系中取相同的长度单位,建立平面直角坐标系,曲线的参数方程是为参数).

(1)求点的直角坐标,并求曲线的普通方程;

(2)设直线过点交曲线两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知梯形如图(1)所示,其中 ,四边形是边长为的正方形,现沿进行折叠,使得平面平面,得到如图(2)所示的几何体.

(Ⅰ)求证:平面平面

(Ⅱ)已知点在线段上,且平面,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在.

(1)求居民收入在的频率;

(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;

(3)为了分析居民的收入与年龄、职业等方面的关系,从这10000人中用分层抽样方法抽出100人作进一步分析,则应月收入为的人中抽取多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数gx)=ax2+cacR),g1)=1且不等式gxx2x+1对一切实数x恒成立.

)求函数gx)的解析式;

)在()的条件下,设函数hx)=2gx)﹣2,关于x的不等式hx1+4hmh)﹣4m2hx),在x[+∞)有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx=2x2-5x-6有两个零点x1x2x1x2),则( .

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数fx=x2-2m+1x+m

1)若方程fx=0有两个不等的实根x1x2,且-1x10x21,求m的取值范围;

2)若对任意的x[12]≤2恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案