精英家教网 > 高中数学 > 题目详情
18.(1)求三个数175,100,75的最大公约数.
(2)将1015(6)转化成十进制的数,再将十进制转化为八进制.

分析 (1)解法一:用较大的数字除以较小的数字,得到商和余数,然后再用上一式中的除数和得到的余数中较大的除以较小的,以此类推,当整除时,就得到要求的最大公约数.
解法二:以较大的数减较小的数,接着把所得的差与较小的数比较,并以大数减小数.继续这个操作,直到所得的减数和差相等为止
(2)利用累加权重法,可先将1015(6)转化成十进制的数,再用除k求余法,可再将十进制转化为八进制.

解答 解:(1)解法一:辗转相除法
①先求175与100的最大公约数
175=100×1+75
100=75×1+25
75=25×3
故175与100的最大公约数为25
②再求25与75的最大公约数
75=25×3
故175,100,75的最大公约数为25.
解法二:更相减损术
①先求175与100的最大公约数
175-100=75
100-75=25
75-25=50
50-25=25
故175与100的最大公约数为25
②再求25与75的最大公约数
75-25=50
50-25=25
故175,100,75的最大公约数为25.
(2)1015(6)=1×63+1×6+5=227,
∵227÷8=28…3,
28÷8=3…4,
3÷8=0…3
∴227=343(8)

点评 本题考查的知识点是用辗转相除法计算最大公约数,数制之间的转化,其中熟练掌握辗转相除法及数制之间转化的运算法则,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.将2n按如图所示规律填在5列的数列中,设22014排在数表的第a行,第b列,则第b列中的前a个数的和为7•22014(不需要算出具体数字)
21222324
28272625
29210211212
216215214213

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,曲线C1的方程是x2+2y2=5,C2的参数方程是$\left\{\begin{array}{l}x=\sqrt{3t}\\ y=-\sqrt{t}\end{array}\right.$(t为参数),则C1与C2交点的直角坐标是($\sqrt{3}$,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.用反证法证明命题“三角形的内角至少有一个大于或等于60°”时,假设正确的是(  )
A.假设至多有一个内角大于或等于60°
B.假设至多有两个内角大于或等于60°
C.假设没有一内角大于或等于60°
D.假设没有一个内角或至少有两个内角大于或等于60°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知(1+2$\sqrt{x}$)n的展开式中,某一项的系数是它前一项系数的2倍,而又等于它后一项系数的$\frac{5}{6}$.
(1)求展开后所有项的系数之和及所有项的二项式系数之和;
(2)求展开式中的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数y=-$\frac{1}{3}$x3+ax有三个单调区间,则a的取值范围是(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一物体沿直线以v(t)=8t-2t2(t的单位为:秒,v的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在对一组数据采用几种不同的回归模型进行回归分析时,得到下面的相应模型的相关指数R2的值,其中拟和效果较好的是(  )
A.0.60B.0.63C.0.65D.0.68

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.甲船在岛A的正南B处,以4km/h的速度向正北航行,AB=10km,同时乙船自岛A出发以6km/h的速度向北偏东60°的方向驶去,当甲、乙两船相距最近时,它们所航行的时间为(  )
A.$\frac{150}{7}$minB.$\frac{15}{7}$hC.21.5 minD.2.15 h

查看答案和解析>>

同步练习册答案