精英家教网 > 高中数学 > 题目详情
12.已知函数$f(x)={log_2}({x^2}-2ax+3)$在区间$(\frac{1}{2},1)$上为减函数,则a的取值范围为[1,2].

分析 利用换元法,结合复合函数单调性之间的关系即可得到结论.

解答 解:设t=g(t)=x2-2ax+3,则函数y=log2t为增函数,
若函数f(x)=log2(x2-2ax+3)在区间$(\frac{1}{2},1)$上内单调递减,
则等价为g(t)=x2-2ax+3在区间$(\frac{1}{2},1)$上内单调递减且g(1)≥0,
即$\left\{\begin{array}{l}{-\frac{-2a}{2}=a≥1}\\{g(1)=1-2a+3≥0}\end{array}\right.$,
解得1≤a≤2,
故a的取值范围是[1,2].
故答案为[1,2].

点评 本题主要考查复合函数单调性的应用,利用换元法结合复合函数单调性之间的关系是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.sin17°•cos43°+sin73°•sin43°等于$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}+1,(x>2)}\\{\frac{5}{16}{x}^{2},(0≤x≤2)}\end{array}\right.$,若关于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且仅有6个不同的实数根,则实数a的取值范围是(  )
A.[-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1]B.(-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1)C.(-$\frac{5}{2}$,-$\frac{9}{4}$)D.(-$\frac{9}{4}$,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列一定是指数函数的是(  )
A.y=axB.y=xa(a>0且a≠1)C.$y={(\frac{1}{2})^x}$D.y=(a-2)ax

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列四个函数中,在(0,+∞)上是增函数的是(  )
A.f(x)=-$\frac{1}{x+1}$B.f(x)=x2-3xC.f(x)=3-xD.f (x)=-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=-x2+2x,g(x)=|f(x)|.
(1)求f(x)在区间[-1,2]上的最小值;
(2)作出函数g(x)的图象,并根据图象写出其单调减区间;
(3)若函数y=g(x)-log2m至少有三个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.有下列几个命题:
①平面α内有无数个点到平面β的距离相等,则α∥β;
②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;
③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;
④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.
其中正确的有③.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.一个多面体的直观图(图1)及三视图(图2)如图所示,其中M、N分别是AF、BC的中点,
(1)求证:MN∥平面CDEF;
(2)求平面MNF与平面CDEF所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,已知B=2A,∠ACB的平分线CD把三角形分成面积为4:3的两部分,则cosA=(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

同步练习册答案