分析 利用换元法,结合复合函数单调性之间的关系即可得到结论.
解答 解:设t=g(t)=x2-2ax+3,则函数y=log2t为增函数,
若函数f(x)=log2(x2-2ax+3)在区间$(\frac{1}{2},1)$上内单调递减,
则等价为g(t)=x2-2ax+3在区间$(\frac{1}{2},1)$上内单调递减且g(1)≥0,
即$\left\{\begin{array}{l}{-\frac{-2a}{2}=a≥1}\\{g(1)=1-2a+3≥0}\end{array}\right.$,
解得1≤a≤2,
故a的取值范围是[1,2].
故答案为[1,2].
点评 本题主要考查复合函数单调性的应用,利用换元法结合复合函数单调性之间的关系是解决本题的关键.
科目:高中数学 来源: 题型:选择题
A. | [-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1] | B. | (-$\frac{5}{2}$,-$\frac{9}{4}$)∪(-$\frac{9}{4}$,-1) | C. | (-$\frac{5}{2}$,-$\frac{9}{4}$) | D. | (-$\frac{9}{4}$,-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | y=ax | B. | y=xa(a>0且a≠1) | C. | $y={(\frac{1}{2})^x}$ | D. | y=(a-2)ax |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(x)=-$\frac{1}{x+1}$ | B. | f(x)=x2-3x | C. | f(x)=3-x | D. | f (x)=-|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{2}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com