(13分)如图,在四棱锥中,底面为边长为4的正方形,平面,为中点, .
(1)求证:.
(2)求三棱锥的体积.
(1)证明:连接,交AB于F,连接EF.
推出进一步得到.
(2).
【解析】
试题分析:(1)证明:因为为的中点,连接,交AB于F,连接EF.
四边形为正方形 为CD的中点
又PD?面 ABE,EF?面ABE,
. …………………………………5分
(2)四边形为正方形
平面,平面
面PAC
平面,平面
…………………………………10分
在中,,AC=4,则
为的中点
…………………………………13分
考点:本题主要考查立体几何中平行、垂直及几何体体积的计算。
点评:典型题,立体几何中平行、垂直关系的证明及角的计算问题是高考中的必考题,象立体几何中的计算问题,往往要“一作、二证、三计算”。
科目:高中数学 来源:2010-2011年广西省桂林中学高二下学期期中考试数学 题型:解答题
((本小题满分12分)
如图,在四棱锥中,底面是矩形.已知
.
(1)证明平面;
(2)求异面直线与所成的角的大小;
(3)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源:2012届福建省三明市高三第一学期测试理科数学试卷 题型:解答题
如图,在四棱锥中,底面是菱形,,,,平面,是的中点,是的中点.
(Ⅰ) 求证:∥平面;
(Ⅱ)求证:平面⊥平面;
(Ⅲ)求平面与平面所成的锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源:2013届上海市高二年级期终考试数学 题型:解答题
(本题满分16分)
如图,在四棱锥中,底面是矩形.已知.
(1)证明平面;
(2)求异面直线与所成的角的大小;
(3)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源:2010年江苏省高二下学期期末考试附加卷数学卷 题型:解答题
如图,在四棱锥中,底面是正方形,侧棱,为中点,作交于
(1)求PF:FB的值
(2)求平面与平面所成的锐二面角的正弦值。
查看答案和解析>>
科目:高中数学 来源:2011届浙江省高三6月考前冲刺卷数学理 题型:解答题
(本小题满分14分)
如图,在四棱锥中,底面为平行四边形,平面,在棱上.
(Ⅰ)当时,求证平面
(Ⅱ)当二面角的大小为时,求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com