精英家教网 > 高中数学 > 题目详情

【题目】选修4-4:坐标系与参数方程

在极坐标系中,点 的极坐标是,曲线 的极坐标方程为.以极点为坐标原点,极轴为 轴的正半轴建立平面直角坐标系,斜率为 的直线 经过点.

(1)写出直线 的参数方程和曲线 的直角坐标方程;

(2)若直线 和曲线相交于两点,求的值.

【答案】(1)为参数), ;(2).

【解析】试题分析:

(1)由题意整理可得直线 的参数方程为参数),曲线 的直角坐标方程

(2)联立直线与圆的方程,直线参数方程 的几何意义可得的值为.

试题解析:

解:(1) 由曲线 的极坐标方程可得,即,因此曲线 的直角坐标方程为,即,点的直角坐标为,直线 的倾斜角为,所以直线 的参数方程为为参数).

(2)将为参数)代入,得,设对应参数分别为,有,根据直线参数方程 的几何意义有, .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中
①函数f(x)=( x的递减区间是(﹣∞,+∞);
②若函数f(x)= ,则函数定义域是(1,+∞);
③已知(x,y)在映射f下的象是(x+y,x﹣y),那么(3,1)在映射f下的象是(4,2).
其中正确命题的序号为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)=2x2﹣4x.
(1)指出图象的开口方向、对称轴方程、顶点坐标;
(2)用描点法画出它的图象;
(3)求出函数的最值,并分析函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆 和点,动圆经过点且与圆相切,圆心的轨迹为曲线

(1)求曲线的方程;

(2)点是曲线轴正半轴的交点,点 在曲线上,若直线 的斜率分别是 ,满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=(﹣2m2+m+2)xm+1为偶函数.
(1)求f(x)的解析式;
(2)若函数y=f(x)﹣2(a﹣1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数a≠0,函数f(x)= ,若f(1﹣a)=f(1+a),则a的值为(
A.﹣
B.﹣
C.﹣ 或﹣
D.﹣1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数,且,函数的图象与直线相切.

(1)求的解析式;

(2)若当时, 恒成立,求实数的取值范围;

(3)是否存在区间,使得在区间上的值域恰好为?若存在,请求出区间,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革新方案,不分文理科,高考成绩实行“”的构成模式,第一个“3”是语文、数学、外语,每门满分150分,第二个“3”由考生在思想政治、历史、地理、物理、化学、生物6个科目中自主选择其中3个科目参加等级性考试,每门满分100分,高考录取成绩卷面总分满分750分.为了调查学生对物理、化学、生物的选考情况,将“某市某一届学生在物理、化学、生物三个科目中至少选考一科的学生”记作学生群体,从学生群体中随机抽取了50名学生进行调查,他们选考物理,化学,生物的科目数及人数统计如下表:

(I)从所调查的50名学生中任选2名,求他们选考物理、化学、生物科目数量不相等的概率;

(II)从所调查的50名学生中任选2名,记表示这2名学生选考物理、化学、生物的科目数量之差的绝对值,求随机变量的分布列和数学期望;

(III)将频率视为概率,现从学生群体中随机抽取4名学生,记其中恰好选考物理、化学、生物中的两科目的学生数记作,求事件“”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数有零点,求实数的取值范围;

(2)证明:当时,

查看答案和解析>>

同步练习册答案