精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,PC⊥平面ABCD,点E在棱PA上.
(Ⅰ)求证:直线BD⊥平面PAC;
(Ⅱ)若PC∥平面BDE,求证:AE=EP;
(Ⅲ)是否存在点E,使得四面体A﹣BDE的体积等于四面体P﹣BDC的体积的 ?若存在,求出 的值;若不存在,请说明理由.

【答案】证明:(Ⅰ)因为PC⊥平面ABCD,所以PC⊥BD,

因为底面ABCD是菱形,所以BD⊥AC,

因为PC∩AC=C,所以BD⊥平面PAC.

(Ⅱ)设AC与BD交点为O,连接OE,

因为平面PAC∩平面BDE=OE,PC∥平面BDE,

所以PC∥OE,

又由ABCD是菱形可知O为AC中点,

所以,在△PAC中,

所以AE=EP.

(Ⅲ)在△PAC中过点E作EF∥PC,交AC于点F,

因为PC⊥平面ABCD,所以EF⊥平面ABCD.

由ABCD是菱形可知S△ABD=S△BDC

假设存在点E满足 ,即 ,则

所以在△PAC中,

所以


【解析】(Ⅰ)推导出PC⊥BD,BD⊥AC,由此能证明BD⊥平面PAC.(Ⅱ)设AC与BD交点为O,连接OE,推导出PC∥OE,由ABCD是菱形可知O为AC中点,利用 ,能证明AE=EP.(Ⅲ)在△PAC中过点E作EF∥PC,交AC于点F,由ABCD是菱形可知S△ABD=S△BDC,由此利用 ,能求出结果.
【考点精析】掌握直线与平面垂直的判定是解答本题的根本,需要知道一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=2 ,AD= ,M为DC的中点,将△DAM沿AM折到△D′AM的位置,AD′⊥BM.
(1)求证:平面D′AM⊥平面ABCM;
(2)若E为D′B的中点,求二面角E﹣AM﹣D′的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】方程为x2+y2﹣4x﹣2y+4=0.以O为极点,x轴正半轴为极轴建立极坐标系.
(1)求l的普通方程与C的极坐标方程;
(2)已知l与C交于P,Q,求|PQ|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0)的离心率是 ,且过点 .直线y= x+m与椭圆C相交于A,B两点. (Ⅰ)求椭圆C的方程;
(Ⅱ)求△PAB的面积的最大值;
(Ⅲ)设直线PA,PB分别与y轴交于点M,N.判断|PM|,|PN|的大小关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京市2016年12个月的PM2.5平均浓度指数如图所示.由图判断,四个季度中PM2.5的平均浓度指数方差最小的是(
A.第一季度
B.第二季度
C.第三季度
D.第四季度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,x∈R,ω>0.
(1)求函数f(x)的值域;
(2)若函数y=f(x)的图象与直线y=﹣1的两个相邻交点间的距离为 ,求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 =(sinx,cos2x), =( cosx,1),x∈R,设f(x)=
(1)求f(x)的解析式及单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,且a=2,f(A)=1,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数a,b,c,下列命题正确的是( )
A.若a>b,则ac2>bc2
B.若a<b<0,则a2>ab>b2
C.若a<b<0,则
D.若a<b<0,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为非零实数,且对于任意的正整数n,都有(a1+a2+a3+…+an2=a13+a23+a33+…+an3
(1)写出数列{an}的前三项a1 , a2 , a3(请写出所有可能的结果);
(2)是否存在满足条件的无穷数列{an},使得a2017=﹣2016?若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由;
(3)记an点所有取值构成的集合为An , 求集合An中所有元素之和(结论不要证明).

查看答案和解析>>

同步练习册答案