精英家教网 > 高中数学 > 题目详情

【题目】某公园有一个直角三角形地块,现计划把它改造成一块矩形和两块三角形区域.如图,矩形区域用于娱乐城设施的建设,三角形BCD区域用于种植甲种观赏花卉,三角形CAE区域用于种植乙种观赏花卉.已知OA=4千米,OB=3千米,∠AOB=90°,甲种花卉每平方千米造价1万元,乙种花卉每平方千米造价4万元,设OE=x千米.试建立种植花卉的总造价为y(单位:万元)关于x的函数关系式;求x为何值时,种植花卉的总造价最小,并求出总造价.

【答案】解:由题意,CD=OE=x.由△BCD∽△BAO知BD= x,所以SBCD= x2
同理得SCAE= (x﹣4)2
所以,y= [x2+(x﹣4)2×4]= (5x2﹣32x+64),其中,0<x<4.
y= [5(x﹣ 2+ ]
因为0<<4,…14分
所以x= 时,y有最小值为4.8万元.
答:x为 时,种植花卉的总造价最小,总造价最小值为4.8万元
【解析】求出三角形BCD、三角形CAE区域的面积,可得函数解析式,利用配方法,可得函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆,定义椭圆上的点的“伴随点”为.

(1)求椭圆上的点的“伴随点”的轨迹方程;

(2)如果椭圆上的点的“伴随点”为,对于椭圆上的任意点及它的“伴随点”,求的取值范围;

(3)当 时,直线交椭圆 两点,若点 的“伴随点”分别是 ,且以为直径的圆经过坐标原点,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知⊙ 与⊙ ,以 分别为左右焦点的椭圆 经过两圆的交点。

(Ⅰ)求椭圆的方程;

(Ⅱ)是椭圆上的两点,若直线的斜率之积为,试问的面积是否为定值?若是,求出这个定值;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|﹣1≤x≤10},集合B={x|2x﹣6≥0}.
R(A∪B);
已知C={x|a<x<a+1},且CA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校用简单随机抽样方法抽取了30名同学,对其每月平均课外阅读时间(单位:小时)进行调查,茎叶图如图:

若将月均课外阅读时间不低于30小时的学生称为“读书迷”.

(1)将频率视为概率,估计该校900名学生中“读书迷”有多少人?

(2)从已抽取的7名“读书迷”中随机抽取男、女“读书迷”各1人,参加读书日宣传活动.

(i)共有多少种不同的抽取方法?

(ii)求抽取的男、女两位“读书迷”月均读书时间相差不超过2小时的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在极坐标系中,点 的极坐标是,曲线 的极坐标方程为.以极点为坐标原点,极轴为 轴的正半轴建立平面直角坐标系,斜率为 的直线 经过点.

(1)写出直线 的参数方程和曲线 的直角坐标方程;

(2)若直线 和曲线相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数f(x)=(﹣2m2+m+2)xm+1为偶函数.
(1)求f(x)的解析式;
(2)若函数y=f(x)﹣2(a﹣1)x+1在区间(2,3)上为单调函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求证:过点有三条直线与曲线相切;

(Ⅱ)当时, ,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,向量 ,函数f(x)=
(1)求函数f(x)的单调递增区间;
(2)将函数y=f(x)的图象上所有点向右平行移动 个单位长度,得函数y=g(x)的图象,求函数y=g(x)在区间[0,π]上的值域.

查看答案和解析>>

同步练习册答案