精英家教网 > 高中数学 > 题目详情
13.若等差数列{an}的前n项和Sn满足S4=4,S6=12,则S2=(  )
A.-1B.0C.1D.3

分析 由等差数列的性质得S2,S4-S2,S6-S4成等差数列,由此能求出结果.

解答 解:∵等差数列{an}的前n项和Sn满足S4=4,S6=12,
S2,S4-S2,S6-S4成等差数列,
∴2(S4-S2)=S2+(S6-S4),
即2(4-S2)=S2+8,
解得S2=0.
故选:B.

点评 本题考查等差数列的前两项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}中,a1=11,a5=-1,则{an}的前n项和Sn的最大值是(  )
A.15B.20C.26D.30

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\frac{1}{2}$≤m≤3,函数f(x)=ln(x+2)+$\frac{m}{2}{x^2}$-2.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若$?m∈[{\frac{1}{2},3}]$,对任意的x1,x2∈[0,2](x1≠x2),不等式|f(x1)-f(x2)|<t|$\frac{1}{{{x_1}+2}}-\frac{1}{{{x_2}+2}}$|恒成立,求t的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题,错误的命题是(  )
A.若m∥α,m∥β,α∩β=n,则m∥nB.若α⊥β,m⊥α,n⊥β,则m⊥n
C.若α⊥β,α⊥γ,β∩γ=m,则m⊥αD.若α∥β,m∥α,则m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知(ax+1)5的展开式中各项系数和为243,则二项式${({\frac{3x}{a}-\frac{1}{{\root{3}{x}}}})^5}$的展开式中含x项的系数为-$\frac{45}{2}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C:$\left\{\begin{array}{l}x=\frac{8k}{{1+{k^2}}}\\ y=\frac{{2(1-{k^2})}}{{1+{k^2}}}\end{array}\right.$(k为参数)和直线l:$\left\{\begin{array}{l}x=2+tcosθ\\ y=1+tsinθ\end{array}\right.$(t为参数).
(1)将曲线C的方程化为普通方程;
(2)设直线l与曲线C交于A,B两点,且P(2,1)为弦AB的中点,求弦AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数$f(x)=ln(1-\frac{1}{x+3})$的定义域为{x|x<-3或x>-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=Acos(ωx-$\frac{π}{3}$)(A>0,ω>0)相邻两条对称轴相距$\frac{π}{2}$,且f(0)=1.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设α、β∈(0,$\frac{π}{4}$),f(α-$\frac{π}{3}$)=$\frac{10}{13}$,f(β+$\frac{π}{6}$)=$\frac{6}{5}$,求tan(2α-2β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z满足(1+i)z=|$\sqrt{3}$+i|,i为虚数单位,则z等于(  )
A.1-iB.1+iC.$\frac{1}{2}$-$\frac{1}{2}$iD.$\frac{1}{2}$+$\frac{1}{2}$i

查看答案和解析>>

同步练习册答案