【题目】已知数列的通项公式为,其中,、.
(1)试写出一组、的值,使得数列中的各项均为正数.
(2)若,,数列满足,且对任意的(),均有,写出所有满足条件的的值.
(3)若,数列满足,其前项和为,且使(、,)的和有且仅有组,、、…、中有至少个连续项的值相等,其它项的值均不相等,求、的最小值.
【答案】(1) 、(答案不唯一).(2) 7,8,9,10,11.(3) 的最小值为.的最小值为
【解析】
(1)只要均小于1即可;
(2)利用对勾函数的单调性分类讨论,注意的取值只能是正整数.
(3),且,求出
因为,只有四组,利用二次函数的性质得,进一步得,的四个值为,,,,因此,的最小值为.再由中有至少个连续项的值相等,其它项的值均不相等,则中接着至少有两个0,从而可得的最小值.
(1)、(答案不唯一).
(2)由题设,.
当,单调递增,不合题意,
时,,在时单调递增,不合题意,因此,.
当时,对于,当时,单调递减;当时,单调递增.
由题设,有,.
于是由及,可解得.
因此,的值为7,8,9,10,11.
(3)因为,且,
所以
因为(、,),所以、.
于是由,可得,进一步得,
此时,的四个值为,,,,因此,的最小值为.
又、、…、中有至少个连续项的值相等,其它项的值均不相等,不妨设,于是有,因为当时,,所以,
因此,,即的最小值为.
科目:高中数学 来源: 题型:
【题目】在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ=4cosθ,直线C2的参数方程为(t为参数).
(1)求曲线C1的直角坐标方程和直线C2的普通方程;
(2)若P(1,0),直线C2与曲线C1相交于A,B两点,求|PA||PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某专卖店销售一新款服装,日销售量(单位为件)f(n) 与时间n(1≤n≤30、nN*)的函数关系如下图所示,其中函数f(n) 图象中的点位于斜率为 5 和-3 的两条直线上,两直线交点的横坐标为m,且第m天日销售量最大.
(Ⅰ)求f(n) 的表达式,及前m天的销售总数;
(Ⅱ)按以往经验,当该专卖店销售某款服装的总数超过 400 件时,市面上会流行该款服装,而日销售量连续下降并低于 30 件时,该款服装将不再流行.试预测本款服装在市面上流行的天数是否会超过 10 天?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别是,是椭圆外的动点,满足.点是线段与该椭圆的交点,点在线段上,并且满足,.
(1)当时,用点P的横坐标表示;
(2)求点的轨迹的方程;
(3)在点的轨迹上,是否存在点,使的面积?若存在,求出的正切值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线是双曲线的一条渐近线,点都在双曲线上,直线与轴相交于点,设坐标原点为.
(1)求双曲线的方程,并求出点的坐标(用表示);
(2)设点关于轴的对称点为,直线与轴相交于点.问:在轴上是否存在定点,使得?若存在,求出点的坐标;若不存在,请说明理由.
(3)若过点的直线与双曲线交于两点,且,试求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合是满足下列性质的函数的全体:存在实数、,对于定义域内任意,均有成立,称数对为函数的“伴随数对”.
(1)判断函数是否属于集合,并说明理由;
(2)若函数,求满足条件的函数的所有“伴随数对”;
(3)若、都是函数的“伴随数对”,当时,,当时,,求当时,函数的解析式和零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,为实数,函数,且函数是偶函数,函数在区间上是减函数,且在区间上是增函数.
(1)求函数的解析式;
(2)求实数的值;
(3)设,问是否存在实数,使得在区间上有最小值-2?若存在,求出的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种水果按照果径大小可分为四类:标准果、优质果、精品果、礼品果.某采购商从采购的一批水果中随机抽取个,利用水果的等级分类标准得到的数据如下:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
个数 | 10 | 30 | 40 | 20 |
(1)若将频率是为概率,从这个水果中有放回地随机抽取个,求恰好有个水果是礼品果的概率.(结果用分数表示)
(2)用样本估计总体,果园老板提出两种购销方案给采购商参考.
方案:不分类卖出,单价为元.
方案:分类卖出,分类后的水果售价如下:
等级 | 标准果 | 优质果 | 精品果 | 礼品果 |
售价(元/kg) | 16 | 18 | 22 | 24 |
从采购单的角度考虑,应该采用哪种方案?
(3)用分层抽样的方法从这个水果中抽取个,再从抽取的个水果中随机抽取个,表示抽取的是精品果的数量,求的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com