精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=lnx﹣ a(x﹣1)(a∈R).
(1)若a=﹣2,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若不等式f(x)<0对任意x∈(1,+∞)恒成立. (ⅰ)求实数a的取值范围;
(ⅱ)试比较ea2与ae2的大小,并给出证明(e为自然对数的底数,e=2.71828).

【答案】
(1)解:因为a=﹣2时,f(x)=inx+x﹣1,

所以切点为(1,0),k=f′(1)=2.

所以a=﹣2时,曲线y=f(x)在点(1,f(1))处的切线方程为y=2x﹣2.


(2)解:( i)由f(x)=lnx﹣ a(x﹣1),

所以

①当a≤0时,x∈(1,+∞),f′(x)>0,

∴f(x)在(1,+∞)上单调递增,f(x)>f(1)=0,

∴a≤0不合题意.

②当a≥2即 时, 在(1,+∞)上恒成立,

∴f(x)在(1,+∞)上单调递减,有f(x)<f(1)=0,

∴a≥2满足题意.

③若0<a<2即 时,由f′(x)>0,可得 ,由f′(x)<0,可得x

∴f(x)在 上单调递增,在 上单调递减,

∴0<a<2不合题意.

综上所述,实数a的取值范围是[2,+∞).

( ii)a≥2时,“比较ea2与ae2的大小”等价于“比较a﹣2与(e﹣2lna)的大小”

设g(x)=x﹣2﹣(e﹣2)lnx,(x≥2).

∴g(x)在[2,+∞)上单调递增,因为g(e)=0.

当x∈[2,e)时,g(x)<0,即x﹣2<(e﹣2)lnx,所以ex2<xe2

当x∈(e,+∞)时g(x)>0,即x﹣2>(e﹣2)lnx,∴ex2>xe2

综上所述,当a∈[2,e)时,ea2<ae2

当a=e时,ea2=ae2

当a∈(e,+∞)时,ea2>ae2


【解析】(1)一求切点,二求切点处的导数,即切线的斜率;(2)只需求出函数f(x)在区间[1,+∞)上的最大值即可,利用导数研究单调性,进一步求其最值构造不等式求解;比较大小可将两个值看成函数值,然后利用函数的性质求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:

表一:男生

表二:女生

(1)从表二的非优秀学生中随机抽取2人交谈,求所选2人中恰有1人测评等级为合格的概率;

(2)由表中统计数据填写下面的列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.

参考公式: ,其中.

参考数据:

0.10

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),焦点到准线的距离为,过点作直线交抛物线于点(点在第一象限).

()若点焦点重合,且弦长,求直线的方程;

()若点关于轴的对称点为,直线x轴于点,且,求证:点B的坐标是,并求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为[0,10),[10,20),[20,30),[30,40),[40,50].
(1)求频率分布直方图中a的值;
(2)从统计学的角度说明学校是否需要推迟5分钟上课;
(3)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求恰有一个学生的单程时间落在[40,50]上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),且的导数为.

(Ⅰ)若是定义域内的增函数,求实数的取值范围;

(Ⅱ)若方程有3个不同的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有两个袋子,其中甲袋中装有编号分别为1、2、3、4的4个完全相同的球,乙袋中装有编号分别为2、4、6的3个完全相同的球.
(Ⅰ)从甲、乙袋子中各取一个球,求两球编号之和小于8的概率;
(Ⅱ)从甲袋中取2个球,从乙袋中取一个球,求所取出的3个球中含有编号为2的球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】大学生赵敏利用寒假参加社会实践,对机械销售公司7月份至12月份销售某种机械配件的销售量及销售单价进行了调查,销售单价和销售量之间的一组数据如下表所示:

月份

7

8

9

10

11

12

销售单价(元)

9

9.5

10

10.5

11

8

销售量(件)

11

10

8

6

5

14

(1)根据7至11月份的数据,求出关于的回归直线方程;

(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差不超过0.5元,则认为所得到的回归直线方程是理想的,试问(1)中所得到的回归直线方程是否理想?

(3)预计在今后的销售中,销售量与销售单价仍然服从(1)中的关系,若该种机器配件的成本是2.5元/件,那么该配件的销售单价应定为多少元才能获得最大利润?(注:利润=销售收入-成本).

 参考公式:回归直线方程,其中,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若钝角三角形的三边长和面积都是整数,则称这样的三角形为“钝角整数三角形”,下列选项中能构成一个“钝角整数三角形”三边长的是(
A.2,3,4
B.2,4,5
C.5,5,6
D.4,13,15

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是(

A.73.3,75,72
B.72,75,73.3
C.75,72,73.3
D.75,73.3,72

查看答案和解析>>

同步练习册答案