精英家教网 > 高中数学 > 题目详情

(12分) 已知函数
(1)求函数y=的零点;
(2) 若y=的定义域为[3,9], 求的最大值与最小值。

(1)2.(2)=1, ymax=3.

解析试题分析:(1)令=0,得x-1=1,即x=2,所以函数的零点是2.
( 2)因为函数在[3,9]上是增函数,所以x=3时,=1, x=9时,ymax=3.
考点:本题考查函数的零点和函数的最值。
点评:函数的零点、对应方程的根、函数与x轴交点的横坐标三者是等价的。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分) 已知是方程的两个不等实根,函数的定义域为
⑴当时,求函数的值域;
⑵证明:函数在其定义域上是增函数;
⑶在(1)的条件下,设函数
若对任意的,总存在,使得成立,
求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)已知函数

(1)作出函数的图象;
(2)写出函数的单调区间;
(3)判断函数的奇偶性,并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知函数,,设.
(1)求的单调区间;
(2)若以图象上任意一点为切点的切线的斜率
恒成立,求实数的最小值.
(3)是否存在实数,使得函数的图象与的图
象恰好有四个不同的交点?若存在,求出的取值范围,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,求:
(1)函数的定义域。 (2)求使的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)已知在定义域上是奇函数,且在上是减函数,图像如图所示.
(1)化简:
(2)画出函数上的图像;
(3)证明:上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数.
(1)求证:函数上是单调递增函数;
(2)当时,求函数在上的最值;
(3)函数上恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)已知函数为奇函数;
(1)求以及m的值;
(2)在给出的直角坐标系中画出的图象;

(3)若函数有三个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,对于任意的,都有,且当时,,若.
(1)求证:为奇函数;
(2)求证:上的减函数;
(3)求函数在区间上的值域.

查看答案和解析>>

同步练习册答案