精英家教网 > 高中数学 > 题目详情

【题目】已知集合A={x|3x+x2>0},B={x|﹣4<x<﹣1},则(  )
A.A∩B={x|﹣4<x<﹣3}
B.A∪B=R
C.BA
D.AB

【答案】A
【解析】由A中不等式变形得:x(x+3)>0,
解得:x<﹣3或x>0,即A={x|x>0或x<﹣3},
∵B={x|﹣4<x<﹣1},
∴A∩B={x|﹣4<x<﹣3},A∪B={x|x>0或x<﹣1}.
故选:A.
【考点精析】利用集合的并集运算和集合的交集运算对题目进行判断即可得到答案,需要熟知并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立;交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆上的一动点到右焦点的最短距离为,且右焦点到右准线的距离等于短半轴的长.

(1)求椭圆的方程;

(2)设是椭圆上关于轴对称的任意两个不同的点,连接交椭圆于另一点,证明直线轴相交于定点

(3)在(2)的条件下,过点的直线与椭圆交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣2)ex+a(x﹣1)2
(1)讨论f(x)的单调性;
(2)若f(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在同一个坐标系中画出函数y=ax , y=sinax的部分图象,其中a>0且a≠1,则下列所给图象中可能正确的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ax2﹣a﹣lnx,g(x)= ,其中a∈R,e=2.718…为自然对数的底数.
(1)讨论f(x)的单调性;
(2)证明:当x>1时,g(x)>0;
(3)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知点P是平行四边形ABCD所在平面外一点,M、N分别是AB、PC的中点.

(1)求证:MN∥平面PAD;

(2)在PB上确定一个点Q,使平面MNQ∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC—A1B1C1中,AC=1,AB=,BC=,AA1=.

(1)求证:A1B⊥B1C;

(2)求二面角A1—B1C—B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知直线y=﹣2x+1与圆O:x2+y2=r2(r>0)交于M,N两点,且MN=

(1)求M,N的坐标;

(2)求过O,M,N三点的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某加工厂用某原料由车间加工出A产品,由乙车间加工出B产品.甲车间加工一箱原料需耗费工时10小时可加工出7千克A产品,每千克A产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B产品,每千克B产品获利50元.甲、乙两车间每天功能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(
A.甲车间加工原料10箱,乙车间加工原料60箱
B.甲车间加工原料15箱,乙车间加工原料55箱
C.甲车间加工原料18箱,乙车间加工原料50箱
D.甲车间加工原料40箱,乙车间加工原料30箱

查看答案和解析>>

同步练习册答案