【题目】已知一次函数是上的减函数,,且 f [ f(x)]=16x-3.
(1)求;
(2)若在(-2,3)单调递增,求实数的取值范围;
(3)当时,有最大值1,求实数的值.
【答案】(1) ; (2); (3).
【解析】
⑴设,结合题意运用待定系数法求出表达式
⑵表示出的解析式,结合单调性求出的取值范围
⑶讨论对称轴与区间的位置关系,求出实数的值
(1)∵是上的增函数,设f(x)=ax+b(a<0)
故f[f(x)]=a(ax+b)+b=a2x+ab+b=16x-3,
∴a=16,ab+b=-5,解得
由于a<0,得a=-4,b=1 ,∴f(x)=-4x+1.
(2)=(-4x+1)(x+m)=-4x2+(1-4m)x+m
对称轴,根据题意可得 3, 解得,
∴的取值范围为。
(3)①当 即时,,解得m=,符合题意;
②当>1时,即时,=1,解得m=,
不符合题意;
由①②可得m=.
科目:高中数学 来源: 题型:
【题目】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x单位:小时)与当天投篮命中率y之间的关系:
时间x | 1 | 2 | 3 | 4 | 5 |
命中率y | 0.4 | 0.5 | 0.6 | 0.6 | 0.4 |
(1)求小李这5天的平均投篮命中率;
(2)用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率. .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C:y2=2px(p>0)上横坐标为4的点到焦点的距离为5.
(1)求抛物线C的方程;
(2)设直线y=kx+b与抛物线C交于A(x1 , y1),B(x2 , y2),且|y1﹣y2|=2,过弦AB中点M作平行于x轴的直线交抛物线于点D,求△ABD的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左右焦点分别为,上顶点为,若直线的斜率为1,且与椭圆的另一个交点为, 的周长为.
(1)求椭圆的标准方程;
(2)过点的直线(直线的斜率不为1)与椭圆交于两点,点在点的上方,若,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(0,+∞)上的函数f(x),如果对任意x∈(0,+∞),恒有f(kx)=kf(x),(k≥2,k∈N+)成立,则称f(x)为k阶缩放函数.
(1)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)=1+ x,求f(2 )的值;
(2)已知函数f(x)为二阶缩放函数,且当x∈(1,2]时,f(x)= ,求证:函数y=f(x)﹣x在(1,+∞)上无零点;
(3)已知函数f(x)为k阶缩放函数,且当x∈(1,k]时,f(x)的取值范围是[0,1),求f(x)在(0,kn+1](n∈N)上的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(12分)已知函数f(x)=
(1)判断函数在区间[1,+∞)上的单调性,并用定义证明你的结论.
(2)求该函数在区间[1,4]上的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知为椭圆的一个焦点,过原点的直线与椭圆交于两点,且, 的面积为.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若,过点且不与坐标轴垂直的直线交椭圆于两点,线段的垂直平分线与轴交于点,求点横坐标的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com