【题目】直角梯形ABCD如图所示,分别以AB、BC、CD、DA所在直线为轴旋转,试说明所得几何体的大致形状.
科目:高中数学 来源: 题型:
【题目】已知指数函数y=f(x)、对数函数y=g(x)和幂函数y=h(x)的图象都经过点P( ),如果f(x1)=g(x2)=h(x3)=4,那么x1+x2+x3=( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是R上的奇函数,且当x>0时,f(x)=-2x2+4x+3.
(1)求f(x)的表达式;
(2)画出f(x)的图象,并指出f(x)的单调区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=e2x+1﹣2mx﹣ m,其中m∈R,e为自然对数底数.
(1)讨论函数f(x)的单调性;
(2)若不等式f(x)≥n对任意x∈R都成立,求mn的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有2名男生和3名女生. (Ⅰ)若其中2名男生必须相邻排在一起,则这5人站成一排,共有多少种不同的排法?
(Ⅱ)若男生甲既不能站排头,也不能站排尾,这5人站成一排,共有多少种不同的排法?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 ,a为正常数.
(1)若f(x)=lnx+φ(x),且 ,求函数f(x)的单调增区间;
(2)若g(x)=|lnx|+φ(x),且对任意x1 , x2∈(0,2],x1≠x2 , 都有 ,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)判断函数 的单调性并给出证明;
(2)若存在实数 使函数 是奇函数,求 ;
(3)对于(2)中的 ,若 ,当 时恒成立,求 的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com