精英家教网 > 高中数学 > 题目详情

【题目】已知函数为其定义域内的奇函数.

(1)求实数的值;

(2)求不等式的解集;

(3)证明: 为无理数.

【答案】(1);(2);(3)见解析.

【解析】试题分析:(1)利用恒成立即可得结果;(2)利用,考虑函数的定义域即可得结果;(3)利用反证法,设,导出矛盾,即得证.

试题解析:(1)因为为其定义域内奇函数,

所以

所以

时,对数无意义,故舍去,

所以

(2)的定义域为

, 得

又因为的定义域为

所以得解集为

(3)

假设为有理数,则其可以写成最简分数形式,而且唯一的,

(其中为两个互质的正整数)

,即 (*),

因为为两个互质的正整数,

所以为奇数, 为偶数,显然奇数不等于偶数,

所以(*)式不成立…

所以假设不成立,

所以为无理数…

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数对一切实数都有,且当时,,又.

(1)判断该函数的奇偶性并说明理由;、

(2)试判断该函数在上的单调性;

(3)求在区间的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区预计从2015年初开始的第月,商品的价格 ,价格单位:元),且第月该商品的销售量(单位:万件).

(1)商品在2015年的最低价格是多少?

(2)2015年的哪一个月的销售收入最少,最少是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为正常数.

⑴若,且,求函数的单调增区间;

⑵在⑴中当时,函数的图象上任意不同的两点,线段的中点为,记直线的斜率为,试证明:

⑶若,且对任意的 ,都有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,若

(1)求函数的解析式;

(2)画出函数的图象,并说出函数的单调区间;

(3)若,求相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若,求曲线处切线的斜率;

(2)求的单调区间;

(3)设,若对任意,均存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三年级3名男生和1名女生为了报某所大学,事先进行了多方详细咨询,并根据自己的高考成绩情况,最终估计3名男生报此所大学的概率都是,这1名女生报此所大学的概率是且这4人报此所大学互不影响。

(Ⅰ)求上述4名学生中报这所大学的人数中男生和女生人数相等的概率;

(Ⅱ)在报考某所大学的上述4名学生中,记为报这所大学的男生和女生人数的和,试求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:

喜欢游泳

不喜欢游泳

合计

男生

10

女生

20

合计

已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为

(1)请将上述列联表补充完整:并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;

(2)针对于问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选2人作为宣传组的组长,设这两人中男生人数为,求的分布列和数学期望.

下面的临界值表仅供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,圆,动圆与圆外切并与圆内切,圆心的轨迹为曲线.

(1)求的方程;

(2)是与圆,圆都相切的一条直线,与曲线交于两点,当圆的半径最长时,求.

查看答案和解析>>

同步练习册答案