精英家教网 > 高中数学 > 题目详情
(2012•武清区一模)如图,六棱锥P-ABCDEF的底面ABCDEF是边长为l的正六边形,顶点P在底面上的射影是BF的中点O.
(1)求证:PA⊥BF;
(2)若直线PB与平面ABCDEF所成的角为
π4
,求二面角A-PB-D的余弦值.
分析:(1)利用线面垂直证明线线垂直,即证明BF⊥平面PAO;
(2)以OB,OD,OP分别为x,y,z轴,建立空间直角坐标系,用坐标表示点,用坐标表示向量,进而求出两平面的法向量,利用向量的夹角公式可求二面角A-PB-D的余弦值.
解答:(1)证明:连接OA,则∵AB=AF,BF的中点O,∴AO⊥BF
∵顶点P在底面上的射影是BF的中点O
∴PO⊥BF
∵AO∩PO=O
∴BF⊥平面PAO
∵PA?平面PAO
∴PA⊥BF;
(2)解:∵顶点P在底面上的射影是BF的中点O
∴∠PBO为直线PB与平面ABCDEF所成的角
∵直线PB与平面ABCDEF所成的角为
π
4

∴∠PBO=
π
4

以OB,OD,OP分别为x,y,z轴,建立空间直角坐标系,则A(0,-
1
2
,0),B(-
3
2
,0,0),P(0,0,
3
),D(0,
3
2
,0)
PB
=(-
3
2
,0, -
3
)
AB
=(-
3
2
1
2
,0)
BD
=(
3
2
3
2
,0)

设平面APB的法向量为
m
=(x,y,z)
,则
m
PB
=0
m
AB
=0

-
3
2
x-
3
z=0
-
3
2
x+
1
2
y=0
,领z=-1,可得
m
=(2,2
3
,-1)

同理可得平面DPB的法向量为
n
=(-2,
2
3
3
,1)

设二面角A-PB-D的平面角为α,则cosα=
m
n
|
m
||
n
|
=-
3
17×19
=-
969
323
点评:本题考查线线垂直,考查面面角,解题的关键是利用线面垂直证明线线垂直,利用向量法,求面面角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•武清区一模)若i为虚数单位,则复数
-1+2i
1-i
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武清区一模)在(
1
x
-
x
)10
的二项展开式中,二项式系数最大的项的项数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武清区一模)命题“?x∈(1,2),x2>x+1”的否定为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武清区一模)己知数列{an}是等比数列,其前n项和为Sn,若a1=1,S1+S2+S3=3,则S10的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武清区一模)抛物线y2=4x的准线与双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的两条渐近线相交得二交点,若二交点间的距离为4,则该双曲线的离心率为(  )

查看答案和解析>>

同步练习册答案