科目:高中数学 来源:天津市耀华中学2012届高三第一次模拟考试数学文科试题 题型:044
已知函数f(x)=ax3+bx+1(a≠0),当x=1时有极值.
(Ⅰ)求a,b的关系式;
(Ⅱ)若当x=1时,函数f(x)有极大值3,且经过点P(0,17)作曲线y=f(x)的切线l,求l的方程;
(Ⅲ)设g(x)=f(x)-2x2(a>0)在区间[2,3]上单调递减,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点
⑴.已知a=1,b=2,p=2,求点Q的坐标。
⑵.已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上。
⑶.已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
(上海卷理20)设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点
⑴已知a=1,b=2,p=2,求点Q的坐标.
⑵已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上.
⑶已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由.
查看答案和解析>>
科目:高中数学 来源:2012届四川省高三12月月考理科数学 题型:解答题
已知A、B、C是直线l上不同的三点,O是l外一点,向量满足:
记y=f(x).
(1)求函数y=f(x)的解析式:
(2)若对任意不等式|a-lnx|-ln[f '(x)-3x]>0恒成立,求实数a的取值范围:
(3)若关于x的方程f(x)=2x+b在[0,1]上恰有两个不同的实根,求实数b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求点M(x,y)的轨迹C的方程;
(2)过点D(2,0)作倾斜角为锐角的直线l与曲线C交于A、B两点,且=求直线l的方程;
(3)是否存在过D的弦AB,使得AB中点Q在y轴上的射影P满足PA⊥PB?
如果存在,求出AB的弦长;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com