精英家教网 > 高中数学 > 题目详情
如图,已知A是椭圆上的一个动点,F1,F2分别为椭圆的左、右焦点,弦AB过点F2,当AB⊥x轴时,恰好有|AF1|=3|AF2|.
(1)求椭圆的离心率;
(2)设P是椭圆的左顶点,PA,PB分别与椭圆右准线交与M,N两点,求证:以MN为直径的圆D一定经过一定点,并求出定点坐标.

【答案】分析:(1)由已知中AB⊥x轴时恰有|AF1|=3|AF2|.结合椭圆的定义,可得,进而求出椭圆的离心率;
(2)由(1)可设椭圆方程为x2+2y2=2b2,其右准线方程为x=2b,分AB⊥x轴时和AB斜率存在时两种情况分别判断F2与MN为直径的圆D的关系,即可得到答案.
解答:解:(1)由条件可得
解得….(3分)
证明:(2)由(1)可设椭圆方程为x2+2y2=2b2,其右准线方程为x=2b,
①当AB⊥x轴时,易得
由三点共线可得M(2b,b),N(2b,-b)
则圆D的方程为(x-2b)(x-2b)+(y-b)(y+b)=0,
即(x-2b)2+y2=b2
易得圆过定点F2(b,0)…(6分)
②当AB斜率存在时,设其方程为y=kx-kb,M(x1,y1),N(x2,y2),
把直线方程代入椭圆方程得:(1+2k2)x2-4k2bx+(2k2-2)b2=0∴
故直线AP的方程为
令x=2b得,同理可得…(9分)
=
所以F2在以MN为直径的圆D上,
综上,以MN为直径的圆D一定经过定点F2(b,0)….(13分)
点评:本题考查的知识点是直线与圆锥曲线的综合应用,椭圆的性质,圆的标准方程,综合性强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•江西模拟)如图,已知A是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的一个动点,F1,F2分别为椭圆的左、右焦点,弦AB过点F2,当AB⊥x轴时,恰好有|AF1|=3|AF2|.
(1)求椭圆的离心率;
(2)设P是椭圆的左顶点,PA,PB分别与椭圆右准线交与M,N两点,求证:以MN为直径的圆D一定经过一定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知P是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上且位于第一象限的一点,F是椭圆的右焦点,O是椭圆的中心,B是椭圆的上顶点,H是直线x=-
a2
c
(c是椭圆的半焦距)与x轴的交点,若PF⊥OF,HB∥OP,试求椭圆的离心率的平方的值.

查看答案和解析>>

科目:高中数学 来源:河北省正定中学2012届高三第二次综合考试数学理科试题 题型:044

如图,已知A是椭圆=1(a>b>0)上的一个动点,F1,F2分别为椭圆的左、右焦点,弦AB过点F2,当AB⊥x轴时,恰好有|AF1|=3|AF2|.

(1)求椭圆的离心率;

(2)设P是椭圆的左顶点,PA,PB分别与椭圆右准线交与M,N两点,求证:以MN为直径的圆D一定经过一定点,并求出定点坐标.

查看答案和解析>>

科目:高中数学 来源:2011年江西省高考数学仿真押题卷10(理科)(解析版) 题型:解答题

如图,已知A是椭圆上的一个动点,F1,F2分别为椭圆的左、右焦点,弦AB过点F2,当AB⊥x轴时,恰好有|AF1|=3|AF2|.
(1)求椭圆的离心率;
(2)设P是椭圆的左顶点,PA,PB分别与椭圆右准线交与M,N两点,求证:以MN为直径的圆D一定经过一定点,并求出定点坐标.

查看答案和解析>>

同步练习册答案