精英家教网 > 高中数学 > 题目详情

已知
若曲线处的切线与直线平行,求a的值;
时,求的单调区间.

(1);(2)单调递增区间为;单调递减区间为

解析试题分析:(1)先求导,由直线方程可知此直线斜率为2,则曲线处的切线的斜率也为2.由导数的几何意义可知。即可得的值。(2)先求导,再令导数大于0得增区间,令导数小于0得减区间。
解:(1) 由题意得

            6分
(2) ∵,∴  
,令,得
,得
单调递增区间为
单调递减区间为            13分
考点:1导数的几何意义;2用导数研究函数的单调性。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,求曲线在点处的切线方程;
(2)若函数在其定义域内为增函数,求正实数的取值范围;
(3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,
(1)若函数f(x)在R上单调递增,求实数a的取值范围;
(2)若函数f(x)在区间(-1,1)上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x+2x,g(x)=a(x2+x).
(1)若a=,求F(x)=f(x)-g(x)的单调区间;
(2)若f(x)≤g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取极值.
(1)求的值;
(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)(2011•广东)设a>0,讨论函数f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,证明:
(2)若,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)讨论的单调性;
(2) 若不等式恒成立,求实数取值范围;
(3)若方程存在两个异号实根,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中.
(1)是否存在实数,使得函数上单调递增?若存在,求出的值或取值范围;否则,请说明理由.
(2)若a<0,且函数y=f(x)的极小值为,求函数的极大值。

查看答案和解析>>

同步练习册答案