【题目】如图,正方体的棱长为 1, 为的中点, 为线段上的动点,过点A、P、Q的平面截该正方体所得的截面记为.则下列命题正确的是__________(写出所有正确命题的编号).
①当时, 为四边形;②当时, 为等腰梯形;③当时, 为六边形;④当时, 的面积为.
科目:高中数学 来源: 题型:
【题目】已知圆锥曲线的方程为.
()在所给坐标系中画出圆锥曲线.
()圆锥曲线的离心率__________.
()如果顶点在原点的抛物线与圆锥曲线有一个公共焦点,且过第一象限,则
(i)交点的坐标为__________.
(ii)抛物线的方程为__________.
(iii)在图中画出抛物线的准线.
()已知矩形各顶点都在圆锥曲线上,则矩形面积的最大值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线的焦点,斜率为的直线交抛物线于两点,且.
(1)求该抛物线的方程;
(2)已知抛物线上一点,过点作抛物线的两条弦和,且,判断直线是否过定点?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业里工人的工资与其生产利润满足线性相关关系,现统计了100名工人的工资(元)与其生产利润(千元)的数据,建立了关于的回归直线方程为,则下列说法正确的是( )
A. 工人甲的生产利润为1000元,则甲的工资为130元
B. 生产利润提高1000元,则预计工资约提高80元
C. 生产利润提高1000元,则预计工资约提高130元
D. 工人乙的工资为210元,则乙的生产利润为2000元
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知:三棱锥中,侧面垂直底面, 是底面最长的边;图1是三棱锥的三视图,其中的侧视图和俯视图均为直角三角形;图2是用斜二测画法画出的三棱锥的直观图的一部分,其中点在平面内.
(Ⅰ)请在图2中将三棱锥的直观图补充完整,并指出三棱锥的哪些面是直角三角形;
(Ⅱ)设二面角的大小为,求的值;
(Ⅲ)求点到面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形中, , , , , 是的中点, 是与的交点,将沿折起到的位置,如图2.
图1 图2
(1)证明: 平面;
(2)若平面平面,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点, 为圆上任意一点,线段上一点满足,直线上一点,满足.
(1)当在圆周上运动时,求点的轨迹的方程;
(2)若直线与曲线交于两点,且以为直径的圆过原点,求证:直线与不可能相切.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com