精英家教网 > 高中数学 > 题目详情

【题目】设无穷数列的前项和为,已知

(1)求的值;

(2)求数列的通项公式;

(3)是否存在数列的一个无穷子数列,使对一切均成立?若存在,请写出数列的所有通项公式;若不存在,请说明理由.

【答案】(1);(2);(3)不存在数列的一个无穷子数列,使,对一切均成立..

【解析】

(1)令,则,解得.

(2)

两式相减得,又因为,故数列的首项为1,公差为1的等差数列,所以,故.

(3)假设存在数列的一个无穷子数列,使对一切均成立,

因为为无穷子数列,则存在使得

.

所以整理得,与为递增数列矛盾,故假设不成立,

即不存在数列的一个无穷子数列,使,对一切均成立.

(1)令

(2)

两式相减得

整理得,又因为

故数列的首项为1,公差为1的等差数列,

所以,故.

(3)假设存在数列的一个无穷子数列,使对一切均成立,

因为为无穷子数列,则存在使得

.

所以整理得

由(2)得,数列为数列的一个无穷子数列,则为递增数列,这与矛盾,故假设不成立,

即不存在数列的一个无穷子数列,使,对一切均成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点,,点满足,记点的轨迹为

1)求的方程;

2)设直线交于两点,求的面积(为坐标原点);

3)设是线段中垂线上的动点,过的两条切线,分别为切点,判断是否存在定点,直线始终经过点,若存在,求出点的坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论的单调性;

(Ⅱ)当时,令,其导函数为,设是函数的两个零点,判断是否为的零点?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已如椭圆的左、右焦点分别为上的动点.

1)若,设点的横坐标为,试用解析式将表示成的函数;

2)试根据的不同取值,讨论满足为等腰锐角三角形的点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. “f(0)”是“函数f(x)是奇函数”的充要条件

B. p:,则

C. “若,则”的否命题是“若,则

D. 为假命题,则p,q均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)当,为两个不相等的正数,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年反映社会现实的电影《我不是药神》引起了很大的轰动,治疗特种病的创新药研发成了当务之急.为此,某药企加大了研发投入,市场上治疗一类慢性病的特效药品的研发费用(百万元)和销量(万盒)的统计数据如下:

研发费用(百万元)

2

3

6

10

13

15

18

21

销量(万盒)

1

1

2

2.5

3.5

3.5

4.5

6

(1)求的相关系数精确到0.01,并判断的关系是否可用线性回归方程模型拟合?(规定:时,可用线性回归方程模型拟合);

(2)该药企准备生产药品的三类不同的剂型,并对其进行两次检测,当第一次检测合格后,才能进行第二次检测.第一次检测时,三类剂型合格的概率分别为,第二次检测时,三类剂型合格的概率分别为.两次检测过程相互独立,设经过两次检测后三类剂型合格的种类数为,求的数学期望.

附:(1)相关系数

2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法错误的是(

A.若样本的平均数为5,标准差为1,则样本的平均数为11,标准差为2

B.身高和体重具有相关关系

C.现有高一学生30名,高二学生40名,高三学生30名,若按分层抽样从中抽取20名学生,则抽取高三学生6

D.两个变量间的线性相关性越强,则相关系数的值越大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若函数为增函数,求实数的值;

2)若函数为偶函数,对于任意,任意,使得成立,求的取值范围.

查看答案和解析>>

同步练习册答案