精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,已知曲线为参数),曲线为参数),且,点P为曲线的公共点.

1)求动点P的轨迹方程;

2)在以原点O为极点,x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为,求动点P到直线l的距离的取值范围.

【答案】1.2

【解析】

1)设点,点P同时满足曲线的方程,消参得,,由,即可求得点的轨迹方程;

2)由,将极坐标方程转化为直角坐标方程,动点为圆心在原点,半径为2的圆,先求出圆心到直线的距离,即可求出动点到直线的取值范围.

解析:(1)设点P的坐标为.

因为点P为曲线的公共点,所以点P同时满足曲线的方程.

曲线消去参数可得,曲线消去参数可得.

,所以.

所以点P的轨迹方程为.

2)由已知,直线l的极坐标方程

根据可化为直角坐标方程:.

因为P的轨迹为圆(去掉两点),

圆心O到直线l的距离为

所以点P到直线l的距离的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某医院对治疗支气管肺炎的两种方案进行比较研究,将志愿者分为两组,分别采用方案和方案进行治疗,统计结果如下:

有效

无效

合计

使用方案

96

120

使用方案

72

合计

32

1)完成上述列联表,并比较两种治疗方案有效的频率;

2)能否在犯错误的概率不超过0.05的前提下认为治疗是否有效与方案选择有关?

附:,其中.

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知椭圆的离心率为,点在椭圆C.

1)求椭圆C的标准方程;

2)过坐标原点的直线交CPQ两点,点P在第一象限,轴,垂足为E,连结QE并延长交C于点G.

①求证:是直角三角形;

②求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解高三年级学生在线学习情况,统计了2020218-27日(共10天)他们在线学习人数及其增长比例数据,并制成如图所示的条形图与折线图的组合图.

根据组合图判断,下列结论正确的是(

A.5天在线学习人数的方差大于后5天在线学习人数的方差

B.5天在线学习人数的增长比例的极差大于后5天的在线学习人数的增长比例的极差

C.10天学生在线学习人数的增长比例在逐日增大

D.10天学生在线学习人数在逐日增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若单调递增,求的值;

2)当时,设函数的最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求直线和曲线的直角坐标方程;

2)若点坐标为,直线与曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱的所有棱长均为2

(Ⅰ)证明:

(Ⅱ)若平面平面的中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,直线交椭圆两点,为坐标原点.

1)若直线过椭圆的右焦点,求的面积;

2)椭圆上是否存在点,使得四边形为平行四边形?若存在,求出所有满足条件的的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案