精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方形中,分别是的中点,将正方形沿着线段折起,使得,设的中点.

1)求证:平面

2)求二面角的余弦值.

【答案】1)见解析(2

【解析】

1)利用线面垂直的判定定理,证得⊥平面,从而得到,再利用等边三角形的特征,得到,之后利用线面垂直的判定定理证得平面

2)利用两两垂直,建立空间直角坐标系,设,写出相应点的坐标,求得两个平面的法向量,之后求出两个法向量所成角的余弦值,进而得到二面角的余弦值.

1)∵分别为正方形的边的中点,

平面平面,∴⊥平面

平面,∴

,∴是等边三角形,

的中点. .

,∴平面.

2)设中点为,连结,则两两垂直,不妨设.

为原点,以为坐标轴建立空间直角坐标系如图:

..

设平面的法向量为

,令,得

为平面的一个法向量

二面角的余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列满足,数列满足.

1)证明是等差数列,并求的通项公式;

2)设数列满足,记表示不超过x的最大整数,求关于n的不等式的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)当a=1时,求函数的单调区间:

(Ⅱ)求函数的极值;

(Ⅲ)若函数有两个不同的零点,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,的中点.

1)证明:

2)若,求二面角平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,短轴长为.

(1)求的方程;

(2)如图,经过椭圆左顶点且斜率为的直线交于两点,交轴于点,点为线段的中点,若点关于轴的对称点为,过点为坐标原点)垂直的直线交直线于点,且面积为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一栋6层楼房里,每个房间的门牌号均为三位数,首位代表楼层号,后两位代表房间号,如218表示的是第2层第18号房间,现已知有宝箱藏在如下图18个房间里的某一间,其中甲同学只知道楼层号,乙同学只知道房间号,不知道楼层号,现有以下甲乙两人的一段对话:

甲同学说:我不知道,你肯定也不知道;

乙同学说:本来我也不知道,但是现在我知道了;

甲同学说:我也知道了.

根据上述对话,假设甲乙都能做出正确的推断,则藏有宝箱的房间的门牌号是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线不与坐标轴垂直,且与抛物线有且只有一个公共点.

1)当点的坐标为时,求直线的方程;

2)设直线轴的交点为,过点且与直线垂直的直线交抛物线两点.时,求点的坐标.

查看答案和解析>>

同步练习册答案