精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的(  )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

【答案】A
【解析】解:f(x)的对称轴为x=﹣ ,fmin(x)=﹣ .(1)若b<0,则﹣ >﹣ ,∴当f(x)=﹣ 时,f(f(x))取得最小值f(﹣ )=﹣ ,即f(f(x))的最小值与f(x)的最小值相等.
∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)若f(f(x))的最小值与f(x)的最小值相等,
则fmin(x)≤﹣ ,即﹣ ≤﹣ ,解得b≤0或b≥2.
∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.
故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cosx(sinx-cosx)+m(m∈R),将y=f(x)的图象向左平移 个单位后得到g(x)的图象,且y=g(x)在区间[]内的最小值为

(1)求m的值;

(2)在锐角△ABC中,若g( )=,求sinA+cosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2 ,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是(  )
A.内切
B.相交
C.外切
D.相离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, .直角梯形通过直角梯形以直线为轴旋转得到,且使平面平面. 为线段的中点, 为线段上的动点.

(1)求证:

(2)当点是线段中点时,求二面角的余弦值;

(3)是否存在点,使得直线平面?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD= ,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.
(1)证明:A=2B;
(2)若cosB= ,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,M是矩形ABCD的边CD上的一点,AC与BM交于点N,BN=BM.

(1)求证:M是CD的中点;

(2)若AB=2,BC=1,H是BM上异于点B的一动点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣a|g(x)=x2+2ax+1(a为正实数),满足f(0)=g(0)

函数F(x)=f(x)+g(x)+b定义域为D

(1)求a的值;

(2)若存在x0∈D,使F(x0)=x0成立,求实数b的取值范围;

(3)若n为正整数,证明:<4.

(参考数据:lg3=0.3010=0.1342=0.0281 =0.0038

查看答案和解析>>

同步练习册答案