【题目】已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=cosx(sinx-cosx)+m(m∈R),将y=f(x)的图象向左平移 个单位后得到g(x)的图象,且y=g(x)在区间[]内的最小值为 .
(1)求m的值;
(2)在锐角△ABC中,若g( )=,求sinA+cosB的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M:x2+y2﹣2ay=0(a>0)截直线x+y=0所得线段的长度是2 ,则圆M与圆N:(x﹣1)2+(y﹣1)2=1的位置关系是( )
A.内切
B.相交
C.外切
D.相离
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形中, , , .直角梯形通过直角梯形以直线为轴旋转得到,且使平面平面. 为线段的中点, 为线段上的动点.
(1)求证: ;
(2)当点是线段中点时,求二面角的余弦值;
(3)是否存在点,使得直线平面?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知平面四边形ABCD,AB=BC=3,CD=1,AD= ,∠ADC=90°,沿直线AC将△ACD翻折成△ACD′,直线AC与BD′所成角的余弦的最大值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.
(1)证明:A=2B;
(2)若cosB= ,求cosC的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,M是矩形ABCD的边CD上的一点,AC与BM交于点N,BN=BM.
(1)求证:M是CD的中点;
(2)若AB=2,BC=1,H是BM上异于点B的一动点,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|,g(x)=x2+2ax+1(a为正实数),满足f(0)=g(0);
函数F(x)=f(x)+g(x)+b定义域为D.
(1)求a的值;
(2)若存在x0∈D,使F(x0)=x0成立,求实数b的取值范围;
(3)若n为正整数,证明:<4.
(参考数据:lg3=0.3010, =0.1342,=0.0281, =0.0038)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com