精英家教网 > 高中数学 > 题目详情

【题目】在棱长为的正方体中,是面对角线上两个不同的动点.以下四个命题:①存在两点,使;②存在两点,使与直线都成的角;③若,则四面体的体积一定是定值;④若,则四面体在该正方体六个面上的正投影的面积的和为定值.其中为真命题的是____.

【答案】①③④

【解析】

对于①中,当点与点重合,与点重合时,可判断①正确;当点点与点重合,与直线所成的角最小为,可判定②不正确;根据平面将四面体可分成两个底面均为平面,高之和为的棱锥,可判定③正确;四面体在上下两个底面和在四个侧面上的投影,均为定值,可判定④正确.

对于①中,当点与点重合,与点重合时,,所以①正确;

对于②中,当点点与点重合,与直线所成的角最小,此时两异面直线的夹角为,所以②不正确;

对于③中,设平面两条对角线交点为,可得平面

平面将四面体可分成两个底面均为平面,高之和为的棱锥,

所以四面体的体积一定是定值,所以③正确;

对于④中,四面体在上下两个底面上的投影是对角线互相垂直且对角线长度均为1的四边形,其面积为定义,

四面体在四个侧面上的投影,均为上底为,下底和高均为1的梯形,其面积为定值,

故四面体在该正方体六个面上的正投影的面积的和为定值,所以④正确.

故答案为:①③④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,右焦点为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.

(1)求椭圆的方程;

(2)如图,过定点的直线交椭圆两点,连接并延长交,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数的两个零点为

1)求的单调区间;

2)若的极小值为,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抗击“新冠肺炎”,全国各地“停课不停学”,各学校都开展了在线课堂,组织学生在线学习,并自主安排时间完成相应作业为了解学生的学习效率,某在线教育平台统计了部分高三备考学生每天完成数学作业所需的平均时间,绘制了如图所示的频率分布直方图.

1)如果学生在完成在线课程后每天平均自主学习时间(完成各科作业及其他自主学习)为小时,估计高三备考学生每天完成数学作业的平均时间占自主学习时间的比例(同一组中的数据用该组区间的中点值为代表)(结果精确到);

2)以统计的频率作为概率,估计一个高三备考学生每天完成数学作业的平均时间不超过分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数在点处的切线方程;

2)讨论函数的极值点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是腾讯公司推出的一种手机通讯软件,它支持发送语音、短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访140位市民进行调查,其中每天玩微信超过6小时的用户称为微信控,否则称其为非微信控 调查结果统计如下:

微信控

非微信控

合计

女性

60

男性

30

合计

70

140

1)根据以上数据,把表格中的数据填写完整;

2)利用(1)完成的表格数据回答下列问题:

①是否在犯错误的概率不超过0.001的前提下认为微信控性别有关;

②已知在被调查的女性微信控市民中有5位退休老人,其中2位是教师,现从这5位退休老人中随机抽取2人,求至少有1位老师的概率.

附表:其中

P(K2k)

0.050

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市据实际情况主要采取以下四种扶贫方式:第一,以工代赈方式,指政府投资建设基础设施工程,组织贫困地区群众参加工程建设并获得劳务报酬,第二,整村推进方式指以贫困村为具体帮扶对象,帮扶对口到村,资金安排到村,扶贫效益到户,第三,科技扶贫方式,指组织科技人员深入贫困乡村实地指导、技术培训等传授科技知识,第四,移民搬迁方式,指对目前极少数居住在生存条件恶劣、自然资源贫乏地区的特困人口,实行自愿移民,该市为了2020年更好的完成精准扶贫各项任务,2020年初在全市贫困户(分一般贫困户和五特户两类)中随机抽取了5000户就目前的主要四种扶贫方式行了问卷调查,支持每种扶贫方式的结果如表:

调查的贫困户

支持以工代赈户数

支持整村推进户数

支持科技扶贫户数

支持移民搬迁户数

一般贫困户

1200

1600

200

五特户(五保户和特困户)

100

100

已知在被调查的5000户中随机抽取一户支持整村推进的概率为0.36.

(Ⅰ)现用分层抽样的方法在所有参与调查的贫困户中抽取50户进行深入访谈,问应在支持科技扶贫户数中抽取多少户?

(Ⅱ)虽然五特户在全市的贫困户所占比例不大,但本次调查要有意义,其中这次调查的五特户户数不能低于被调查总户数的9.2%,已知,求本次调查有意义的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,角的平分线于点,设.(1)求;(2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)讨论函数的极值;

2)若为整数,,且,不等式成立,求整数的最大值.

查看答案和解析>>

同步练习册答案