精英家教网 > 高中数学 > 题目详情
10、定义在R上的奇函数f(x)满足f(x-3)=f(x+2),且f(1)=2,则f(2011)-f(2010)=
2
分析:观察题设条件,由f(x-3)=f(x+2),可求出函数的周期是5,再有奇函数的性质可以求出f(-1)=-2,根据函数的这些性质求f(2011)-f(2010)的值即可
解答:解:∵f(x)满足f(x-3)=f(x+2),∴函数的周期是5,
∵义在R上的奇函数f(x),f(1)=2,∴f(-1)=-2,f(0)=0
∴f(2011)-f(2010)=f(1)-f(0)=2-0=2
故答案为2
点评:本题考点是函数的周期性,本题是一个求值问题,关键是根据本题所给的函数的性质得出周期是5,要有利用恒等式求周期的意识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(2x)=-2f(x),f(-1)=
1
2
,则f(2)的值为(  )
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则不等式xf(x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在[0,+∞)是增函数,判断f(x)在(-∞,0)上的增减性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=2010x+log2010x,则方程f(x)=0的实根的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),当x≥0时,f(x)=x3+x2,则f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步练习册答案