精英家教网 > 高中数学 > 题目详情
在如图所示的几何体中,是边长为2的正三角形. 若平面,平面平面, ,且

(1)求证://平面;
(2)求证:平面平面.
(1)证明详见解析;(2)证明详见解析.

试题分析:(1)取的中点,连接,先根据已知条件证出平面,再证,最后得出∥平面;(2)先判断四边形是平行四边形,利用已知证明平面平面,所以,再证明平面,所以平面⊥平面.
试题解析:

(1) 取的中点,连接,
因为,且
所以, , .                       1分
又因为平面⊥平面,
所以平面                                      3分
因为平面,
所以,                                             4分
又因为平面,平面,                   5分
所以∥平面.                                       6分
(2)由(1)已证,又,,
所以四边形是平行四边形,                           7分
所以.                                           8分
由(1)已证,又因为平面⊥平面,
所以平面,                                    10分
所以平面 .                                     11分
平面,所以 .                     12分
因为,,
所以平面 .                                  13分
因为平面,
所以平面⊥平面 .                             14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在几何体中,点在平面ABC内的正投影分别为A,B,C,且,E为中点,

(1)求证;CE∥平面
(2)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,四边形为矩形,为等腰三角形,,平面 平面,且分别为的中点.

(Ⅰ)证明:平面
(Ⅱ)证明:平面平面
(Ⅲ)求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形中,点的中点,点的中点,将△、△ 分别沿折起,使两点重合于点,连接.

(1)求证:;     (2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为矩形,分别是的中点,

(Ⅰ)求证:平面
(Ⅱ)求证:平面平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的几何体ABCDFE中,△ABC,△DFE都是等边三角形,且所在平面平行,四边形BCED是边长为2的正方形,且所在平面垂直于平面ABC.
(Ⅰ)求几何体ABCDFE的体积;
(Ⅱ)证明:平面ADE∥平面BCF;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱柱中,侧棱底面,

(Ⅰ)求证:平面
(Ⅱ)若直线与平面所成角的正弦值为,求的值
(Ⅲ)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式。(直接写出答案,不必说明理由)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于直线和平面,若,则“”是“”的(   )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于不重合的直线和不重合的平面,下列命题错误的是(   )
A.若,则B.若,则
C.若,则D.若,则

查看答案和解析>>

同步练习册答案