精英家教网 > 高中数学 > 题目详情
已知双曲线E:的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线FG与直线l交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(Ⅲ)在平面上是否存在定点P,使得对圆C上任意的点G有?若存在,求出点P的坐标;若不存在,请说明理由.

解:(Ⅰ)由双曲线E: ,得l:x=﹣4,C(﹣4,0),F(﹣6,0).
又圆C过原点,所以圆C的方程为(x+4)2+y2=16.   
(Ⅱ)由题意,设G(﹣5,yG),代入(x+4)2+y2=16,得 ,
所以FG的斜率为 ,FG的方程为 .
所以C(﹣4,0)到FG的距离为 
直线FG被圆C截得的弦长为 
(Ⅲ)设P(s,t),G(x0,y0),则由 ,
得 
整理得3(x02+y02)+(48+2s)x0+2ty0+144﹣s2﹣t2=0.①
又G(x0,y0)在圆C:(x+4)2+y2=16上,所以x02+y02+8x0=0   ②
②代入①,得(2s+24)x0+2ty0+144﹣s2﹣t2=0.
又由G(x0,y0)为圆C上任意一点可知,
解得:s=﹣12,t=0.
所以在平面上存在一定点P,其坐标为(﹣12,0).  

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线=1的左焦点为F1,左、右顶点为A1、A2,P为双曲线上任意一点,则分别以线段PF1,A1A2为直径的两个圆的位置关系为(    )

A.相交          B.相切           C.相离             D.以上情况都有可能

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省泰州市泰兴三中高三(下)期初数学试卷(解析版) 题型:解答题

已知双曲线E:的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线FG与直线l交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(Ⅲ)在平面上是否存在定点P,使得对圆C上任意的点G有?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省泰州市泰兴三高高三(下)期初数学试卷(解析版) 题型:解答题

已知双曲线E:的左焦点为F,左准线l与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线FG与直线l交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;
(Ⅲ)在平面上是否存在定点P,使得对圆C上任意的点G有?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:江苏苏北四市2010-2011学年高三第一次调研考试数学试题 题型:解答题

 

已知椭圆E:的左焦点为F,左准线与x轴的交点是圆C的圆心,圆C恰好经过坐标原点O,设G是圆C上任意一点.

(1)求圆C的方程;

(2)若直线FG与直线交于点T,且G为线段FT的中点,求直线FG被圆C所截得的弦长;

(3)在平面上是否存在一点P,使得?若存在,求出点P坐标;若不存在,请说明理由.

 

 

 

 

 

查看答案和解析>>

同步练习册答案