【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求直线的普通方程及曲线的直角坐标方程;
(Ⅱ)已知点是曲线上的任意一点,当点到直线的距离最大时,求经过点且与直线平行的直线的方程.
科目:高中数学 来源: 题型:
【题目】在△ABC中,a,c,________.(补充条件)
(1)求△ABC的面积;
(2)求sin(A+B).
从①b=4,②cosB,③sinA这三个条件中任选一个,补充在上面问题中并作答.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点的动直线l与y轴交于点,过点T且垂直于l的直线与直线相交于点M.
(1)求M的轨迹方程;
(2)设M位于第一象限,以AM为直径的圆与y轴相交于点N,且,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥E﹣ABCD的侧棱DE与四棱锥F﹣ABCD的侧棱BF都与底面ABCD垂直,AD⊥CD,AB∥CD,AB=3,AD=4,AE=5,.
(1)证明:DF∥平面BCE.
(2)求A到平面BEDF的距离,并求四棱锥A﹣BEDF的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,矩形中,,,为的中点,点,分别在线段,上运动(其中不与,重合,不与,重合),且,沿将折起,得到三棱锥,则三棱锥体积的最大值为______;当三棱锥体积最大时,其外接球的半径______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某城市对一项惠民市政工程满意程度(分值:分)进行网上调查,有2000位市民参加了投票,经统计,得到如下频率分布直方图(部分图):
现用分层抽样的方法从所有参与网上投票的市民中随机抽取位市民召开座谈会,其中满意程度在的有5人.
(1)求的值,并填写下表(2000位参与投票分数和人数分布统计);
满意程度(分数) | |||||
人数 |
(2)求市民投票满意程度的平均分(各分数段取中点值);
(3)若满意程度在的5人中恰有2位为女性,座谈会将从这5位市民中任选两位发言,求男性甲或女性乙被选中的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com