精英家教网 > 高中数学 > 题目详情
6.如图,已知E,F分别是正方形ABCD边BC、CD的中点,EF与AC交于点O,PA,NC都垂直于平面ABCD,且PA=AB=4,NC=2,M是线段PA上的一动点.
(1)求证:平面PAC⊥平面NEF;
(2)若PC∥平面MEF,试求PM:MA的值;
(3)在第(2)问的条件下,求平面MEF与平面NEF的夹角的大小.

分析 (1)连结BD,通过证明EF⊥平面PAC,然后证明平面PAC⊥平面NEF;
(2)几何法:利用直线与平面平行,通过相似比直接推出PM:MA的值.
向量法:建立空间直角坐标系,推出点M为线段PA上靠近P的四等分点,得到结果.
(3)分别求出平面MEF的法向量和平面NEF的法向量,由此利用向量法能求出平面MEF与平面NEF的夹角的大小.

解答 证明:(1)连结BD,∵PA⊥平面ABCD,BD?平面ABCD,∴PA⊥BD,
又∵BD⊥AC,AC∩PA=A,∴BD⊥平面PAC,
又∵E,F分别是BC、CD的中点,∴EF∥BD,
∴EF⊥平面PAC,又EF?平面NEF,
∴平面PAC⊥平面NEF;
解:(2)(几何法)
连结OM,∵PC∥平面MEF,平面PAC∩平面MEF=OM,
∴PC∥OM,
∴$\frac{PM}{PA}=\frac{OC}{AC}$=$\frac{1}{4}$,
∴PM:MA=1:3
(向量法)
建立如图所示的直角坐标系,
则P(0,0,4),C(4,4,0),E(4,2,0),F(2,4,0),
∴$\overrightarrow{PC}$=(4,4,-4),$\overrightarrow{EF}$=(-2,2,0),
设点M的坐标为M(0,0,m),则$\overrightarrow{ME}$=(4,2,-m),
设平面MEF的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{ME}=4x+2y-mz=0}\\{\overrightarrow{n}•\overrightarrow{EF}=-2x+2y=0}\end{array}\right.$,令x=1,得$\overrightarrow{n}$=(1,1,$\frac{6}{m}$),
∵PC∥平面MEF,∴$\overrightarrow{PC}•\overrightarrow{n}$=4+4-$\frac{24}{m}$=0,解得m=3,
故AM=3,即点M为线段PA上靠近P的四等分点,
∴PM:MA=1:3.
(3)E(4,2,0),F(2,4,0),M(0,0,3),N(4,4,2),
$\overrightarrow{EF}$=(-2,2,0),$\overrightarrow{EM}$=(-4,-2,3),$\overrightarrow{EN}$=(0,2,2),
设平面MEF的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EF}=-2x+2y=0}\\{\overrightarrow{n}•\overrightarrow{EM}=-4x-2y+3z=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,2),
设平面NEF的法向量$\overrightarrow{m}=(a,b,c)$,
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{EF}=-2a+2b=0}\\{\overrightarrow{m}•\overrightarrow{EN}=2b+2c=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,1,-1),
∵$\overrightarrow{n}•\overrightarrow{m}$=1+1-2=0,
∴平面MEF与平面NEF的夹角的大小为$\frac{π}{2}$.

点评 本题考查面面垂直的证明,考查两线段比值的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表所示:
零件的个数x(个)2345
加工的时间y(h)2.5344.5
($\widehat{a}=\overline{y}-\widehat{b}\overline{x}$,$\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n(\overline{x})^{2}}$)
(Ⅰ)在给定的坐标系中画出表中数据的散点图;
(Ⅱ)求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅲ)试预测加工10个零件需要多少时间?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,若在三棱柱ABC-A′B′C′中,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,$\overrightarrow{AA′}$=$\overrightarrow{c}$,M是A′B的中点,点N在CM上,且CN:NM=1:2,用$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$表示$\overrightarrow{CM}$、$\overrightarrow{C′N}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若△ABC中,D为边AC的中点,角C为$\frac{π}{3}$,且BC=8,BD=7,则△ABC的面积为$6\sqrt{3}$或$20\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若直线l:(a2-1)x-y-2a+1=0不过第二象限,则a的取值范围为(  )
A.(-∞,$\frac{1}{2}$]B.[$\frac{1}{2}$,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图在三棱锥S-ABC中,CA=CB=3,∠ACB=30°,高SO=8,动点M、N分别在线段BC上SO上,且SN=2CM=2x,则下列四个图象中大致描绘了四面体AMCN的体积V与x变化关系(其中x∈(0,3])的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为(  )
A.内切B.外切C.相交D.外离

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.以直角坐标系的原点O为极点,x轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知曲线C1的参数方程为$\left\{\begin{array}{l}{x=2cosα}\\{y=sinα}\end{array}\right.$(α为参数),曲线C1的极坐标方程为ρ(cosθ+2sinθ)+2=0,曲线C2的图象与x轴、y轴分别交于A、B两点.
(1)判断A、B两点与曲线C1的位置关系;
(2)点M是曲线C1上异于A、B两点的动点,求△MAB的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为抛物线C2:y2=2px的焦点F,且点F到双曲线的一条渐近线的距离为$\sqrt{3}$,若双曲线C1与抛物线C2在第一象限内的交点为P(x0,2$\sqrt{6}$),则该双曲线的离心率e为(  )
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.1+$\sqrt{2}$

查看答案和解析>>

同步练习册答案