精英家教网 > 高中数学 > 题目详情

为了调查某大学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:
表1:男生上网时间与频数分布表

上网时间(分钟)





人数
5
25
30
25
15
表2:女生上网时间与频数分布表
上网时间(分钟)





人数
10
20
40
20
10
(Ⅰ)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;
(Ⅱ)完成表3的列联表,并回答能否有90%的把握认为“学生周日上网时间与性别有关”?
(Ⅲ)从表3的男生中“上网时间少于60分钟”和“上网时间不少于60分钟”的人数中用分层抽样的方法抽取一个容量为5的样本,再从中任取两人,求至少有一人上网时间超过60分钟的概率.
表3 :
 
上网时间少于60分钟
上网时间不少于60分钟
合计
男生
 
 
 
女生
 
 
 
合计
 
 
 
附:,其中

0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001

0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
 

(I)225; (II)否;(III).

解析试题分析:(I)统计得到女生样本中的上网时间不少于60分钟的频数,根据频数与容量之比等于频率,易得到全校上网时间不少于60分钟的人数; (II)由以上列联表1、2的数据,可统计得到表3的数据,根据独立性检验原理可知:没有90%的把握认为“学生周日上网时间与性别有关”;(III) 五名男生中任取两人的基本事件数10个,根据表3可知男生上网超过60分钟与不超过60分钟的人数比为3:2,再写出至少一人超过60分钟的事件数7个,易求得概率为.
试题解析:(1)设估计上网时间不少于60分钟的人数,
依据题意有,解得: ,
所以估计其中上网时间不少于60分钟的人数是225人.
(2)根据题目所给数据得到如下列联表:

 
上网时间少于60分钟
上网时间不少于60分钟
合计
男生
60
40
100
女生
70
30
100
合计
130
70
200
                                                       
其中  ,
因此,没有90%的把握认为“学生周日上网时间与性别有关”. 
(3)因为上网时间少于60分钟与上网时间不少于60分钟的人数之比为,所以5人中上网时间少于60分钟的有3人,记为 上网时间不少于60分钟的有2人,记为从中任取两人的所有基本事件为:(),(),(),(),(),(),(),(),(),(),共10种,                 
其中“至少有一人上网时间超过60分钟”包含了7种, .
考点:1、用样本估计总体;  2、独立性检验;3、古典概型的概率求法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

为预防H7N9病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:

分组
A组
B组
C组
疫苗有效
673
a
b
疫苗无效
77
90
c
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(I)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?
(II)已知b≥465,c ≥30,求通过测试的概率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了对某课题进行研究,用分层抽样方法从三所科研单位A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):

科研单位
相关人数
抽取人数
A
16

B
12
3
C
8

(Ⅰ)确定的值;
(Ⅱ)若从科研单位A、C抽取的人中选2人作专题发言,求这2人都来自科研单位A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校高三期末统一测试,随机抽取一部分学生的数学成绩分组统计如下表:
(Ⅰ)求出表中的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;

分组
频数
频率















合计



(Ⅱ)若全校参加本次考试的学生有600人,试估计这次测试中全校成绩在分以上的人数;
(Ⅲ)若该校教师拟从分数不超过60的学生中选取2人进行个案分析,求被选中2人分数不超过30分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

南昌市为增强市民的交通安全意识,面向全市征召“小红帽”志愿者在部分交通路口协助交警维持交通,把符合条件的1000名志愿者按年龄分组:第1组、第2组、第3组、第4组、第5组,得到的频率分布直方图如图所示:

(1)若从第3、4、5组中用分层抽样的方法抽取12名志愿者在五一节这天到广场协助交警维持交通,应从第3、4、5组各抽取多少名志愿者?
(2)在(1)的条件下,南昌市决定在这12名志愿者中随机抽取3名志愿者到学校宣讲交通安全知识,若表示抽出的3名志愿者中第3组的人数,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某种报纸,进货商当天以每份进价元从报社购进,以每份售价元售出。若当天卖不完,剩余报纸报社以每份元的价格回收。根据市场统计,得到这个季节的日销售量(单位:份)的频率分布直方图(如图所示),将频率视为概率。

(Ⅰ)求频率分布直方图中的值;
(Ⅱ)若进货量为(单位:份),当时,求利润的表达式;
(Ⅲ)若当天进货量,求利润的分布列和数学期望(统计方法中,同一组数据常用该组区间的中点值作为代表).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2012年第三季度,国家电网决定对城镇居民民用电计费标准做出调整,并根据用电情况将居民分为三类: 第一类的用电区间在,第二类在,第三类在(单位:千瓦时). 某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示.

⑴ 求该小区居民用电量的中位数与平均数;
⑵ 利用分层抽样的方法从该小区内选出10位居民代表,若从该10户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率;
⑶ 若该小区长期保持着这一用电消耗水平,电力部门为鼓励其节约用电,连续10个月,每个月从该小区居民中随机抽取1户,若取到的是第一类居民,则发放礼品一份,设为获奖户数,求的数学期望与方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校为了解高三年级不同性别的学生对体育课改上自习课的态度(肯定还是否定),进行了如下的调查研究.全年级共有名学生,男女生人数之比为,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为
(1)求抽取的男学生人数和女学生人数;
(2)通过对被抽取的学生的问卷调查,得到如下列联表:

 
否定
肯定
总计
男生
 
10
 
女生
30
 
 
总计
 
 
 
①完成列联表;
②能否有的把握认为态度与性别有关?
(3)若一班有名男生被抽到,其中人持否定态度,人持肯定态度;二班有名女生被抽到,其中人持否定态度,人持肯定态度.
现从这人中随机抽取一男一女进一步询问所持态度的原因,求其中恰有一人持肯定态度一人持否定态度的概率.
解答时可参考下面临界值表:

0.10
0.05
0.025
0.010
0.005

2.706
3.841
5.024
6.635
7.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:

(Ⅰ)估计该校男生的人数;
(Ⅱ)估计该校学生身高在170~185 cm之间的概率;
(Ⅲ)从样本中身高在180~190 cm之间的男生中任选2人,求至少有1人身高在185~190 cm之间的概率.

查看答案和解析>>

同步练习册答案