精英家教网 > 高中数学 > 题目详情

【题目】如图,是离心率为的椭圆的左、右焦点,过轴的垂线交椭圆所得弦长为,设是椭圆上的两个动点,线段的中垂线与椭圆交于两点,线段的中点的横坐标为1.

1)求椭圆的方程;

2)求的取值范围.

【答案】1;(2

【解析】

1)将代入椭圆方程,可得,再结合离心率为,联立可求得,即可求出椭圆方程;

2)结合的横坐标为1,可表示出直线的方程,与椭圆方程联立,结合韦达定理,可得到的表达式,进而求得的取值范围.

1)将代入椭圆方程得,则,即

又离心率,即,所以,解得

所以椭圆的方程为

2)设,若直线的斜率存在且不为0,设为,则

两式相减得,又,∴,直线的方程为

,与椭圆的方程联立得

代入椭圆方程,得,所以,则

.

当直线的斜率为0时,不满足的中点的横坐标为1

当直线的斜率不存在时,即为椭圆的左右顶点,

综上所述,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知如图,长方体中,,点分别为 的中点,过点的平面与平面平行,且与长方体的面相交,交线围成一个几何图形.

(1)在图中画出这个几何图形,并求这个几何图形的面积(画图说出作法,不用说明理由);

(2)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】乒乓球单打比赛在甲、乙两名运动员间进行,比赛采用胜制(即先胜局者获胜,比赛结束),假设两人在每一局比赛中获胜的可能性相同.

1)求甲以获胜的概率;

2)求乙获胜且比赛局数多于局的概率;

3)求比赛局数的分布列,并求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求函数的单调区间与极值;

(Ⅱ)若不等式对任意恒成立,求实数的取值范围;

(Ⅲ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为的透明密闭的正方形容器中,装有容器总体积一半的水(不计容器壁的厚度),将该正方体容器绕旋转,并始终保持所在直线与水平平面平行,则在旋转过程中容器中水的水面面积的最大值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,且满足,数列中,,对任意正整数.

1)求数列的通项公式;

2)是否存在实数,使得数列是等比数列?若存在,请求出实数及公比q的值,若不存在,请说明理由;

3)求数列n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】方程的曲线即为函数的图象,对于函数,有如下结论:上单调递减;函数存在零点;函数的值域是R若函数的图象关于原点对称,则函数的图象就是确定的曲线

其中所有正确的命题序号是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在发生某公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志是“连续10天,每天新增疑似病例不超过7人”,根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是( )

A. 甲地:总体均值为3,中位数为4

B. 乙地:总体均值为1,总体方差大于0

C. 丙地:总体均值为2,总体方差为3

D. 丁地:中位数为2,众数为3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校学生会为了解高二年级600名学生课余时间参加中华传统文化活动的情况(每名学生最多参加7).随机抽取50名学生进行调查,将数据分组整理后,列表如下:

则以下四个结论中正确的是( )

A.表中的数值为10

B.估计该年级参加中华传统文化活动场数不高于2场的学生约为108

C.估计该年级参加中华传统文化活动场数不低于4场的学生约为216

D.若采用系统抽样方法进行调查,从该校高二600名学生中抽取容量为30的样本,则分段间隔为15

查看答案和解析>>

同步练习册答案