精英家教网 > 高中数学 > 题目详情

【题目】直线与曲线有且只有一个交点,则b的取值范围是(

A. B.

C. D.

【答案】C

【解析】

由曲线方程的特点得到此曲线表示在y轴右边的单位圆的一半,可得出圆心坐标和圆的半径r,然后根据题意画出相应的图形,根据图形找出三个关键点:直线过(0,﹣1);直线过(0,1)以及直线与圆相切且切点在第四象限,把(0,﹣1)与(0,1)代入直线y=x+b中求出相应的b值,根据图形得到直线与曲线只有一个交点时b的范围,再由直线与圆相切时,圆心到直线的距离等于圆的半径,利用点到直线的距离公式列出关于b的方程,求出方程的解得到b的值,此时直线与曲线也只有一个交点,综上,得到满足题意的b的范围.

由题意可知:曲线方程表示一个在y轴右边的单位圆的一半,

则圆心坐标为(0,0),圆的半径r=1,

画出相应的图形,如图所示:

当直线y=x+b过(0,﹣1)时,把(0,﹣1)代入直线方程得:b=﹣1,

当直线y=x+b过(0,1)时,把(0,1)代入直线方程得:b=1,

当﹣1<b≤1时,直线y=x+b与半圆只有一个交点时,

又直线y=x+b与半圆相切时,圆心到直线的距离d=r,即=1,

解得:b=(舍去)或b=﹣

综上,直线与曲线只有一个交点时,b的取值范围为﹣1<b≤1或b=﹣

故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知△A1B1C1的三内角余弦值分别等于△A2B2C2三内角的正弦值,那么两个三角形六个内角中的最大值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)用定义证明:函数是R上的增函数;

(2)化简,并求值:

(3)若关于x的方程上有解,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为中位数分别为则(

A. xx,mm B. xx,mm

C. xx,mm D. xx,mm

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知
(1)请写出fn(x)的表达式(不需证明);
(2)设fn(x)的极小值点为Pn(xn , yn),求yn
(3)设 ,gn(x)的最大值为a,fn(x)的最小值为b,求b﹣a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某几何体的三视图都是直角三角形,则该几何体的体积等于__________

【答案】10

【解析】几何体为三棱锥,(高为4底面为直角三角形),体积为

点睛:空间几何体体积问题的常见类型及解题策略

(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解.

(2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.

(3)若以三视图的形式给出几何体,则应先根据三视图得到几何体的直观图,然后根据条件求解.

型】填空
束】
15

【题目】如图:在三棱锥中,已知底面是以为斜边的等腰直角三角形,且侧棱长,则三棱锥的外接球的表面积等于__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=.

(1)f(2)+f,f(3)+f的值;

(2)求证:f(x)+f是定值;

(3)求f(2)+f+f(3)+f+…++f的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣1:几何证明选讲
如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB并延长交⊙O于点E.证明:

(1)ACBD=ADAB;
(2)AC=AE.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线 )上一点, 是抛物线的焦点, .

(1)求抛物线的方程;

(2)已知 ,过 的直线 交抛物线 两点,以 为圆心的圆 与直线 相切,试判断圆 与直线 的位置关系,并证明你的结论.

查看答案和解析>>

同步练习册答案