精英家教网 > 高中数学 > 题目详情

如图,在三棱锥P-ABC中,∠PAB=∠PAC=∠ACB=90°.
(1)求证:平面PBC丄平面PAC
(2)已知PA=1,AB=2,当三棱锥P-ABC的体积 最大时,求BC的长.

解:(1)证明:∵∠PAB=∠PAC=90°,∴PA⊥AB,PA⊥AC,
∵AB∩AC=A,∴PA⊥平面ABC,
∵BC?平面ABC,∴BC⊥PA
∵∠ACB=90°,∴BC⊥CA,又PA∩CA=A,
∴BC⊥平面PAC,∵BC?平面PBC,
∴平面PBC⊥平面PAC.
(2)由(1)知:PA⊥平面ABC,BC⊥CA,
设BC=x(0<x<2),AC===
VP-ABC=×S△ABC×PA=x=
×=
当且仅当x=时,取“=”,
故三棱锥P-ABC的体积最大为,此时BC=
分析:(1)由线线垂直证线面垂直,再由线面垂直证面面垂直即可;
(2)根据棱锥的体积公式,构造函数,通过求函数的最大值,求得三棱锥的体积的最大值及最大值时的条件.
点评:本题考查面面垂直的判定及三棱锥的体积.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案