精英家教网 > 高中数学 > 题目详情
7.设P是不等式组$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+3y≤1}\end{array}\right.$表示的平面区域内的任意一点,向量$\overrightarrow{m}$=(-1,1),$\overrightarrow{n}$=(2,-1),若$\overrightarrow{OP}=λ\overrightarrow m+μ\overrightarrow n$,则$\frac{μ}{λ+1}$的取值范围(  )
A.[-$\frac{1}{2}$,2]B.[0,1]C.[$\frac{1}{2}$,1]D.[0,$\frac{1}{2}$]

分析 由向量知识和已知可得$\left\{\begin{array}{l}{λ-2μ≤0}\\{λ-μ≥0}\\{2λ-μ≤1}\end{array}\right.$,作出$\left\{\begin{array}{l}{λ-2μ≤0}\\{λ-μ≥0}\\{2λ-μ≤1}\end{array}\right.$所对应的可行域,$\frac{μ}{λ+1}$表示区域内的点和(-1,0)连线的斜率,数形结合可得.

解答 解:∵向量$\overrightarrow{m}$=(-1,1),$\overrightarrow{n}$=(2,-1),且$\overrightarrow{OP}=λ\overrightarrow m+μ\overrightarrow n$,
∴(x,y)=λ(-1,1)+μ(2,-1)=(-λ+2μ,λ-μ),
∵$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+3y≤1}\end{array}\right.$,∴$\left\{\begin{array}{l}{-λ+2μ≥0}\\{λ-μ≥0}\\{(-λ+2μ)+3(λ-μ)≤1}\end{array}\right.$,即$\left\{\begin{array}{l}{λ-2μ≤0}\\{λ-μ≥0}\\{2λ-μ≤1}\end{array}\right.$,
作出$\left\{\begin{array}{l}{λ-2μ≤0}\\{λ-μ≥0}\\{2λ-μ≤1}\end{array}\right.$所对应的可行域(如图阴影),
$\frac{μ}{λ+1}$表示区域内的点和(-1,0)连线的斜率,
当直线经过点O(0,0)时,$\frac{μ}{λ+1}$取最小值0,
当直线经过点A(1,1)时,$\frac{μ}{λ+1}$取最大值$\frac{1}{2}$.
故选:D.

点评 本题考查简单线性规划,准确作图是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知正四面体ABCD的棱长为9,点P是三角形ABC内(含边界)的一个动点满足P到面DAB、面DBC、面DCA的距离成等差数列,则点P到面DCA的距离最大值为2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在直角坐标系xOy中,已知直线l的参数方程为$\left\{\begin{array}{l}{x=tcosα}\\{y=1+tsinα}\end{array}\right.$其中t为参数,0≤α<π,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ2-4ρcosθ+3=0.
(1)求直线l与曲线C的普通方程;
(2)求曲线C上的点到直线l上点的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=$\frac{x+2}{x+1}$的值域是(-∞,1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若α为△ABC的内角,且$\sqrt{3}sinα+cosα=1$.则α=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求$\frac{sin50°+cos40°(1+\sqrt{3}tan10°)}{co{s}^{2}20}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求下面函数的定义域和值域:
y=3[1-($\frac{1}{2}$)x].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式组$\left\{\begin{array}{l}{x+3(5-x)>2}\\{x-3>\frac{x}{2}-\frac{1}{4}}\end{array}\right.$的解集是{x|$\frac{11}{2}$<x<$\frac{13}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知曲线C1:ρ=1,曲线C2:$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t-\sqrt{2}}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)
(1)求C1与C2交点的坐标;
(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.

查看答案和解析>>

同步练习册答案