【题目】已知函数.
(1)若存在极值,求实数a的取值范围;
(2)设,设是定义在上的函数.
(ⅰ)证明:在上为单调递增函数(是的导函数);
(ⅱ)讨论的零点个数.
【答案】(1).(2)(ⅰ)证明见解析;(ⅱ)答案见解析
【解析】
(1)求导得,按照、分类,求得、的解集即可得解;
(2)(ⅰ)令,对求导,按照、分类,证明恒大于0,即可得证;
(ⅱ)由的单调性结合,按照、分类,结合即可得解.
(1)求导得,
当时,,在R上单调递减,无极值;
当时,在单调递减,在上单调递增,
则在处有极小值.
综上,实数a的取值范围为;
(2)(ⅰ)证明:由题意,
∵令,
∴,
∵,
当时,,,,
则;
当时,令,则,
所以在上单调递减,在上单调递增,
所以,所以,
从而有:,而,
则,则;
综上,对都有成立,
故在区间单调递增;
(ⅱ)由(ⅰ)知,在区间单调递增且,
①当时,,
当时,则在单调递减;
当时,则在单调递增,
则是的唯一极小值点,且,
从而可知:当时,在区间有唯一零点0;
②当时,有,
且,
故存在使,
此时在单调递减,在单调递增,
且
,
又,由零点存在定理知:
则在区间有唯一零点,记作,
从而可知:当时,在区间上有两个零点:0和;
综上:①当时,在区间有唯一零点0;
②当时,在区间有两个不同零点.
科目:高中数学 来源: 题型:
【题目】设X是有限集,t为正整数,F是包含t个子集的子集族:F=.如果F中的部分子集构成的集族S满足:对S中任意两个不相等的集合A、B,均不成立,则称S为反链.设S1为包含集合最多的反链,S2是任意反链.证明:存在S2到S1的单射f,满足或成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】庄子说:“一尺之锤,日取其半,万世不竭”,这句话描述的是一个数列问题,现用程序框图描述,如图所示,若输入某个正整数n后,输出的S∈(,),则输入的n的值为( )
A.7B.6C.5D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=axlnx﹣x2﹣ax+1(a∈R)在定义域内有两个不同的极值点.
(1)求实数a的取值范围;
(2)设两个极值点分别为x1,x2,x1<x2,证明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点,离心率为,点是椭圆上的动点,的最大面积是.
(1)求椭圆的方程;
(2)圆E经过椭圆的左、右焦点,且与椭圆在第一象限的交点为,且三点共线,为坐标原点,直线交椭圆于两点,且.
(i) 求直线的斜率;
(ii)当的面积取到最大值时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆C:过原点的直线与椭圆交于A,B两点(点A在第一象限),过点A作x轴的垂线,垂足为点,设直线BE与椭圆的另一交点为P,连接AP得到直线l,交x轴于点M,交y轴于点N.
(1)若,求直线AP的斜率;
(2)记的面积分别为S1,S2,S3,求的的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知椭圆(a>b>0)的左、右焦点分别为F1,F2,过点F2的直线交椭圆于M,N两点.已知椭圆的短轴长为,离心率为.
(1)求椭圆的标准方程;
(2)当直线MN的斜率为时,求的值;
(3)若以MN为直径的圆与x轴相交的右交点为P(t,0),求实数t的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年新冠肺炎疫情期间,某区政府为了解本区居民对区政府防疫工作的满意度,从本区居民中随机抽取若干居民进行评分(满分分).根据调查数据制成如下表格和频率分布直方图.已知评分在的居民有人.
满意度评分 | ||||
满意度等级 | 不满意 | 基本满意 | 满意 | 非常满意 |
(1)求频率分布直方图中的值及所调查的总人数;
(2)定义满意度指数(满意程度的平均分)/100,若,则防疫工作需要进行大的调整,否则不需要大调整.根据所学知识判断该区防疫工作是否需要进行大调整?
(3)为了解部分居民不满意的原因,从不满意的居民(评分在、)中用分层抽样的方法抽取名居民,倾听他们的意见,并从人中抽取人担任防疫工作的监督员,求这人中仅有一人对防疫工作的评分在内的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com