精英家教网 > 高中数学 > 题目详情

【题目】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了20141月至201612月期间月接待游客量(单位:万人)的数据,绘制了如图所示的折线图.根据该折线图,下列结论错误的是(

A.月接待游客量逐月增加

B.年接待游客量逐年增加

C.各年的月接待游客量高峰期大致在78

D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳

【答案】A

【解析】

观察折线图可知月接待游客量每年78月份明显高于12月份,且折线图呈现增长趋势,高峰都出现在7、8月份,1月至6月的月接待游客量相对于7月至12月波动性更小.

对于选项A,由图易知月接待游客量每年78月份明显高于12月份,故A错;

对于选项B,观察折线图的变化趋势可知年接待游客量逐年增加,故B正确;

对于选项CD,由图可知显然正确.故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

(Ⅰ)讨论函数的单调性;

(Ⅱ)是否存在正实数,使得对任意,都有,若存在,求出实数的取值范围;若不存在,请说明理由;

(Ⅲ)当时, ,对恒成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种产品,每年投入固定成本0.5万元,此外每生产100件这种产品还需要增加投资0.25万元,经预测可知,市场对这种产品的年需求量为500件,当出售的这种产品的数量为t(单位:百件)时,销售所得的收入约为(万元)

1)若该公司的年产量为x(单位:百件),试把该公司生产并销售这种产品所得的年利润表示为年产量x的函数;

2)当这种产品的年产量为多少时,当年所得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l与拋物线C相切.

1)求拋物线方程;

2)斜率不为0的直线经过拋物线C的焦点F,交抛物线于两点AB,拋物线C上是否存在两点DE关于直线对称.若存在求出斜率k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以原点为极点,轴正半轴为极轴建立极坐标系,直线的参数方程为为参数),圆的极坐标方程为.

(1)写出直线的方程和圆的直角坐标方程;

(2)若点为圆上一动点,求点到直线的最小距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数,.

1)求函数在点处的切线方程;

2)若对于任意,存在,使得,求的取值范围;

3)若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的有(

A.设正六棱锥的底面边长为1,侧棱长为,那么它的体积为

B.用斜二测法作△ABC的水平放置直观图得到边长为a的正三角形,则△ABC面积为

C.三个平面可以将空间分成467或者8个部分

D.已知四点不共面,则其中任意三点不共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知斜率为的直线与椭圆交于两点,线段的中点为

(1)证明:

(2)设的右焦点,上一点,.证明:成等差数列,并求该数列的公差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某艺术品公司欲生产一款迎新春工艺礼品,该礼品是由玻璃球面和该球的内接圆锥组成,圆锥的侧面用于艺术装饰,如图1.为了便于设计,可将该礼品看成是由圆O及其内接等腰三角形绕底边上的高所在直线旋转而成,如图2.已知圆O的半径为,设,圆锥的侧面积为S圆锥的侧面积R-底面圆半径,I-母线长))

1)求S关于的函数关系式;

2)为了达到最佳观赏效果,要求圆锥的侧面积S最大.S取得最大值时腰的长度

查看答案和解析>>

同步练习册答案