精英家教网 > 高中数学 > 题目详情
20.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,则截面的面积是2$\sqrt{6}$.

分析 取AB、C1D1的中点M、N,连结A1M、MC、CN、NA1.由已知得四边形A1MCN是平行四边形,连结MN,作A1H⊥MN于H,由题意能求出截面的面积.

解答 解:取AB、C1D1的中点M、N,连结A1M、MC、CN、NA1
由于A1N∥PC1∥MC且A1N=PC1=MC,
∴四边形A1MCN是平行四边形.
又∵A1N∥PC1,A1M∥BP,A1N∩A1M=A1
PC1∩BP=P,
∴平面A1MCN∥平面PBC1
因此,过A1点作与截面PBC1平行的截面是平行四边形.
又连结MN,作A1H⊥MN于H,由于A1M=A1N=$\sqrt{5}$,MN=2$\sqrt{2}$,
则AH=$\sqrt{3}$.
∴${S}_{△{A}_{1}MN}$=$\frac{1}{2}×2\sqrt{2}×\sqrt{3}=\sqrt{6}$,
故${S}_{平行四边形{A}_{1}MCB}$=2${S}_{△{A}_{1}MN}$=2$\sqrt{6}$.
故答案为:$2\sqrt{6}$.

点评 本题考查截面面积的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知一个平放的正四面体的各棱长均为4,其内有一轻质小球(不计重量),现从正四面体顶端向内注水,球慢慢上浮,当球与正四面体各侧面均相切(与水面也相切)时,若注入的水的体积是正四面体体积的$\frac{7}{8}$,则球的表面积等于.
A.$\frac{7}{6}$πB.$\frac{4}{3}$πC.$\frac{2}{3}$πD.$\frac{1}{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=x+\frac{a}{x}$,且f(1)=2.
(1)判断f(x)在[1,+∞)的单调性,并证明你的结论;
(2)求函数在$[{\frac{1}{2},2}]$上最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某几何体的三视图如图所示,则该几何体的体积为$\frac{8}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知α,β为锐角,sinα=$\frac{\sqrt{2}}{10}$,sinβ=$\frac{\sqrt{10}}{10}$,则α+2β=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数$f(x)=\left\{{\begin{array}{l}{{2^x},x≤0}\\{{{log}_2}x,x>0}\end{array}}\right.$
(1)在所给的平面直角坐标系中画出函数f(x)的图象;
(2)利用图象求f(x)=$\frac{1}{2}$时x的值;
(3)当0<f(x)<$\frac{1}{2}$时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知等差数列{an}的前n项和为Sn,S5=-20,则-6a4+3a5=(  )
A.-20B.4C.12D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知奇函数f(x)在定义域(-2,2)内是单调递增函数,求满足f(1-m)+f(1-3m)<0的实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sinx-2$\sqrt{3}{sin^2}\frac{x}{2}$.
(I)求f(x)的最小正周期及单调递增区间;
(Ⅱ)求f(x)在区间$[{0,\frac{2π}{3}}]$上的最值.

查看答案和解析>>

同步练习册答案