【题目】定义在R上的奇函数f(x)满足在(﹣∞,0)上为增函数且f(﹣1)=0,则不等式xf(x)>0的解集为( )
A.(﹣∞,﹣1)∪(1,+∞)
B.(﹣1,0)∪(0,1)
C.(﹣1,0)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)
科目:高中数学 来源: 题型:
【题目】在四棱锥中,底面是矩形, 平面, 是等腰三角形, , 是的一个三等分点(靠近点),的延长线与的延长线交于点,连接.
(1)求证: ;
(2)求证:在线段上可以分别找到两点, ,使得直线平面,并分别求出此时的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在直三棱柱ABC﹣A1B1C1中,AB=AA1=2,∠ABC=90°,点E、F分别是棱AB、BB1的中点,当二面角C1﹣AA1﹣B为45o时,直线EF和BC1所成的角为( )
A.45o
B.60o
C.90o
D.120o
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l过点P(2,1)
(1)点A(﹣1,3)和点B(3,1)到直线l的距离相等,求直线l的方程;
(2)若直线l与x正半轴、y正半轴分别交于A,B两点,且△ABO的面积为4,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数y=sin(x﹣ )图象上所有的点( ),可以得到函数y=sin(x+ )的图象.
A.向左平移 单位?
B.向右平移 单位
C.向左平移 单位?
D.向右平移 单位
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的右焦点为F,右顶点为A,设离心率为e,且满足,其中O为坐标原点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点的直线l与椭圆交于M,N两点,求△OMN面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费(单位:千元)对年销售量(单位: )和年利润(单位:千元)的影响.对近8年的年宣传费和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.
表中.
(1)根据散点图判断与哪一个适宜作为年销售量关于年宣传费的回归类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程;
(3)已知这种产品的利润与的的关系为.根据(2)的结果回答下列问题:
(ⅰ)年宣传费时,年销售量及年利润的预报值是多少?
(ⅱ)年宣传费为何值时,年利润的预报值最大?
附:对于一组数据,其回归直线的的斜率和截距的最小二乘估计为.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com