精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=ln($\sqrt{1+9{x}^{2}}$-3x)+1,若f(a)=$\frac{1}{3}$,则f(-a)的值为(  )
A.-$\frac{1}{3}$B.2C.$\frac{1}{3}$D.$\frac{5}{3}$

分析 利用函数的奇偶性的性质推出ln($\sqrt{1+9{a}^{2}}$-3a)的值,然后求解即可.

解答 解:函数f(x)=ln($\sqrt{1+9{x}^{2}}$-3x)+1,若f(a)=$\frac{1}{3}$,
可得ln($\sqrt{1+9{a}^{2}}$-3a)+1=$\frac{1}{3}$,∴ln($\sqrt{1+9{a}^{2}}$-3a)=$-\frac{2}{3}$.
函数g(x)=ln($\sqrt{1+9{x}^{2}}$-3x)是奇函数,g(-a)=-g(a)
f(-a)=-[ln($\sqrt{1+9{a}^{2}}$-3a)]+1=$\frac{2}{3}+1$=$\frac{5}{3}$.
故选:D.

点评 本题考查函数的奇偶性的应用,函数的零点与方程的跟的关系,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数$f(x)={log_{\frac{1}{2}}}$cosx在x∈(0,2π)时的单调递增区间是(  )
A.$({0,\frac{π}{2}})$B.(0,π)C.(π,2π)D.$({\frac{3π}{2},2π})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若(x+$\frac{1}{2x}$)n的二项展开式中前三项的系数成等差数列,则常数n的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图(图1):
(Ⅰ)试根据频率分布直方图估计小区每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过6000元的居民中随机抽出2户进行捐款援助,求这两户在同一分组的概率;
(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,在图2表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过
4000元
经济损失超过
4000元
合计
捐款超过
500元
30
捐款不超
过500元
6
合计
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:临界值表参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合M={x|x>1},N={x|x2-2x≥0},则(∁RM)∩N=(  )
A.(-∞,-2]B.(-∞,0]C.[0,1)D.[-2,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某城市随机抽取一年内100天的空气质量指数API的监测数据,结果统计如下:
API空气质量频数频率
[0,50]50.05
[50,100] ① 0.2
[100,150]轻度污染 25 ②
[150,200]轻度污染 30 0.3
[200,250]中度污染 10 0.1
[250,300]中度重污染 10 0.1
合计 100 1.00
(I)求频率分布表中①、②位置相应的数据,并完成频率分布直方图;
(Ⅱ)请由频率分布直方图来估计这100天API的平均值;
(Ⅲ)假如企业每天由空气污染造成的经济损失S(单位:元)与空气质量指数API(记为ω)的关系式为
S=$\left\{\begin{array}{l}{0,0≤ω≤100}\\{4ω-400,00<ω≤200}\\{4.8ω-600,200<ω≤300}\end{array}\right.$,若将频率视为概率,在本年内随机抽取一天,试估计这天的经济损失S不
超过600元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设$M=\left\{{x\left|{y=\sqrt{x-1}}\right.}\right\}$,N={x|2x(x-2)<1},则M∩N为(  )
A.{x|x≥1}B.{x|1≤x<2}C.{x|0<x≤1}D.{x|x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知存在实数α,使得关于x的不等式$\sqrt{x}+\sqrt{4-x}≥α$有解,则α的最大值为(  )
A.2B.$2\sqrt{2}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求值:${2}^{lo{g}_{\sqrt{2}}3}$+log${\;}_{(2+\sqrt{3})}$(7+4$\sqrt{3}$)-102+lg2

查看答案和解析>>

同步练习册答案