分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值与最大值.
解答 解:作出不等式对应的平面区域如图,
由z=3x+y,得y=-3x+z,
平移直线y=-3x+z,由图象可知当直线y=-3x+z,经过点A(0,1)时,直线y=-3x+z的截距最小,
此时z最小.此时z的最小值为z=0×3+1=1,
平移直线y=-3x+z,由图象可知当直线y=-3x+z,经过点B时,直线y=-3x+z的截距最大,
此时z最大.由$\left\{\begin{array}{l}{x-y+1=0}\\{x+2y-8=0}\end{array}\right.$,解得B(2,3)
此时z的最大值为z=2×3+3=9,
故答案为:[1,9].
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1-3i}{2}$ | B. | $\frac{1+3i}{2}$ | C. | $\frac{-1-3i}{2}$ | D. | $\frac{-1+3i}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | {dn}是等差数列 | B. | {dn2}是等差数列 | C. | {Sn}是等差数列 | D. | {Sn2}是等差数列 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{x}{2017x+1}$ | B. | $\frac{x}{x+2017}$ | C. | $\frac{2017x}{2017x+1}$ | D. | $\frac{2017x+1}{x}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com