【题目】(本小题满分12分)我们把一系列向量按次序排成一列,称之为向量列,记作,已知向量列满足:,.
(1)证明:数列是等比数列;
(2)设表示向量与间的夹角,若,对于任意正整数,不等式恒成立,求实数的范围
(3)设,问数列中是否存在最小项?若存在,求出最小项;若不存在,请说明理由
【答案】(1)见解析;(2);(3)存在最小项,最小项是
【解析】
试题分析:第一问利用等比数列的定义证明,第二问只需证明不等式左边的最小值大于a(a+2),接下来研究左边和式的单调性,最后转化为求解,第三问假设存在第n项最小满足,求解关于n的不等式得第5项最小.
试题解析:(1)∵ ,
∴ ,
∴数列是等比数列;
(2)∵ ,∴ , ,
不等式化为:对任意正整数恒成立.
设.
又 ,
∴ 数列单调递增,,
要使不等式恒成立,只要, ,得
∴ 使不等式对于任意正整数恒成立的的取值范围是.
(3)∵,∴ ,
假设中的第 项最小,由 ,,∴,
当时,有,由可得,即,∴ ,,或(舍),
∴ ,即有,
由,得, 又,∴ ;
故数列中存在最小项,最小项是
科目:高中数学 来源: 题型:
【题目】(本小题满分13分)如图所示的茎叶图记录了甲、乙两组各四名同学的投篮命中次数, 乙组记录中有一个数据模糊,无法确认, 在图中以表示.
(Ⅰ)如果乙组同学投篮命中次数的平均数为, 求及乙组同学投篮命中次数的方差;
(Ⅱ)在(Ⅰ)的条件下, 分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名, 记事件A:“两名同学的投篮命中次数之和为17”, 求事件A发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},{bn}满足2Sn=(an+2)bn , 其中Sn是数列{an}的前n项和.
(1)若数列{an}是首项为 ,公比为﹣ 的等比数列,求数列{bn}的通项公式;
(2)若bn=n,a2=3,求证:数列{an}满足an+an+2=2an+1 , 并写出数列{an}的通项公式;
(3)在(2)的条件下,设cn= , 求证:数列{cn}中的任意一项总可以表示成该数列其他两项之积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}满足a1+a2=10,a5=a3+4.
(1)求{an}的通项公式;
(2)记{an}的前n项和为Sn若Sk+1<2ak+a2,求正整数k的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知四边形ABCD内接于圆O
(1)若AB=2,BC=6,CD=4,AC=8,求BD
(2)若AC=,BC=+1,∠ADB=,求AD2+DC2的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M的圆心M在y轴上,半径为1.直线l:y=2x+2被圆M所截得的弦长为 ,且圆心M在直线l的下方.
(1)求圆M的方程;
(2)设A(t,0),B(t+5,0)(﹣4≤t≤﹣1),若AC,BC是圆M的切线,求△ABC面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥S﹣ABCD中,底面ABCD为直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分别为SA,SB的中点,E为CD中点,过M,N作平面MNPQ分别与BC,AD交于点P,Q,若 =t .
(1)当t= 时,求证:平面SAE⊥平面MNPQ;
(2)是否存在实数t,使得二面角M﹣PQ﹣A的平面角的余弦值为 ?若存在,求出实数t的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com