精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= + ,则下列命题中正确命题的序号是
①f(x)是偶函数;
②f(x)的值域是[ ,2];
③当x∈[0, ]时,f(x)单调递增;
④当且仅当x=2kπ± (k∈Z)时,f(x)=

【答案】①②④
【解析】解:对于①,由于f(﹣x)= + =f(x),故正确;
对于②,由题意函数f(x)= + =|sin +cos |+|sin ﹣cos |=
所以:在x= +kπ(k∈Z)时,函数图象位于最低点,
该函数取得最小值 ,当且仅当x=kπ(k∈Z)时,函数图象位于最高点为2,故正确;
对于③,当x∈[0, ]时, ∈[0, ],可得cos ≥sin
由题意函数f(x)= + =|sin +cos |+|sin ﹣cos |=2cos
由余弦函数的性质可得:f(x)=2cos ,当x∈[0, ]时,f(x)单调递减,故错误;
对于④,当x=2kπ± (k∈Z)时,可得sinx=±1,可得:f(x)=
反之,当f(x)= 时,函数图象位于最低点,x= +2kπ(k∈Z),故正确;
所以答案是:①②④.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若一个四位数的各位数字相加和为,则称该数为“完美四位数”,如数字“”.试问用数字组成的无重复数字且大于的“完美四位数”有( )个

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】记关于x的不等式 的解集为P,不等式|x+2|<3的解集为Q
(1)若a=3,求P;
(2)若P∪Q=Q,求正数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量 =( sinx,sinx), =(cosx,sinx),x∈[0, ].
(1)若| |=| |,求x的值;
(2)设函数f(x)= ,求f(x)的最大值及单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=2x2﹣3x+1,g(x)=ksin(x﹣ )(k≠0).
(1)设f(x)的定义域为[0,3],值域为A; g(x)的定义域为[0,3],值域为B,且AB,求实数k的取值范围.
(2)若方程f(sinx)+sinx﹣a=0在[0,2π)上恰有两个解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);

轿车A

轿车B

轿车C

舒适型

100

150

z

标准型

300

450

600

按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(t)= ,g(x)=cosxf(sinx)﹣sinxf(cosx),x∈(π, ).
(1)求函数g(x)的值域;
(2)若函数y=|cos(ωx+ )|f(sin(ωx+ ))(ω>0)在区间[ ,π]上为增函数,求实数ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣x﹣ (x<0),g(x)=x2+bx﹣2(x>0),b∈R,若f(x)图象上存在A,B两个不同的点与g(x)图象上A′,B′两点关于y轴对称,则b的取值范围为(
A.(﹣4 ﹣5,+∞)
B.(4 ﹣5,+∞)
C.(﹣4 ﹣5,1)
D.(4 ﹣5,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若等比数列{an}的前n项和Sn=2016n+t(t为常数),则a1的值为(
A.2013
B.2014
C.2015
D.2016

查看答案和解析>>

同步练习册答案