精英家教网 > 高中数学 > 题目详情
19.抛物线y2=8x上一点P到焦点的距离为6,在y轴上的射影为Q,O为原点,则四边形OFPQ的面积等于12$\sqrt{2}$.

分析 先利用抛物线的定义,根据抛物线y2=8x上的点P到焦点F的距离为6,确定点P的横坐标,进而可得P的坐标,即可求得四边形OFPQ的面积.

解答 解:∵抛物线y2=8x上的点P(x,y)到焦点F的距离为6,
∴x+$\frac{p}{2}$=x+2=6,
∴x=4,
抛物线方程为y2=8x
∴x=4时,y=±4$\sqrt{2}$,
∴P的坐标为(4,±4$\sqrt{2}$)
∴四边形OFPQ是一个梯形,其面积为S=$\frac{1}{2}$(2+4)×4$\sqrt{2}$=12$\sqrt{2}$.
故答案为:12$\sqrt{2}$.

点评 本题考查抛物线的定义,考查四边形面积的计算,确定点P的位置是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.说明下列极坐标方程表示什么曲线,并画圆.
(1)ρ=$\frac{π}{3}$;
(2)ρcosθ=2;
(3)ρ=3;
(4)ρ=6cosθ;
(5)ρ=10sinθ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f($\frac{2}{x}$+1)=$\frac{1}{x-1}$,则f(x)的解析式为f(x)=$\frac{x-1}{3-x}$,x≠1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a,b,c都是正数,a+2b+3c=9,则$\frac{1}{4a}$+$\frac{1}{18b}$+$\frac{1}{108c}$的最小值为$\frac{1}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,已知过抛物线x2=2py(p>0)的焦点F的直线l与抛物线相交于A,B两点
(1)若A(x1,3)到焦点F的距离为4,求抛物线的方程;
(2)若抛物线方程为x2=4y,在A,B两点处的切线相交于点M,若点M的横坐标为2,求△ABM的外接圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.判断函数f(x)=$\left\{\begin{array}{l}{ln(\sqrt{x+1}+\sqrt{x})\\;x>0}\\{0\\;x=0}\\{ln(\sqrt{1-x}+\sqrt{-x})\\;x<0}\end{array}\right.$的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.6个人排成一排,其中甲不能排在两端的排法数有(  )
A.120种B.240种C.480种D.600种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若f(x+1)=$\left\{\begin{array}{l}{sinx}&{(x>0)}\\{lg(-x)}&{(x<0)}\end{array}\right.$,则f($\frac{1}{2}$π+1)•f(-9)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在正方体ABCD-A1B1C1D1中任取一点P,则点P在三棱锥B1-ABC的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

同步练习册答案