精英家教网 > 高中数学 > 题目详情

【题目】根据条件求下列各函数的解析式:

(1)已知函数f(x+1)=3x+2,则f(x)的解析式;

(2)已知是一次函数,且满足,求的解析式;

(3)已知满足,求的解析式.

【答案】(1) f(x)=3x-1;(2) ;(3) ()

【解析】

1)利用换元法即可求出函数fx)的解析式;

2)设一次函数(),代入已知比较系数可得ab的方程组,解方程组可得结果;

3)将替换,构造方程组即可得到的解析式.

1)设x1t,则xt1

f(t)3(t1)23t1

f(x)3x1.

2)因为是一次函数,可设()

所以有,即

因此应有,解得.

的解析式是.

3)因为,①

替换,得,②

由①②解得()

的解析式是 ().

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值值越大产品的性能越好)与这种新合金材料的含量(单位:克)的关系为:当时,的二次函数;当时,.测得部分数据如下表:

(单位:克)

0

2

6

10

8

8

(Ⅰ)求关于的函数关系式

(Ⅱ)求该新合金材料的含量为何值时产品的性能达到最佳.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,如果存在给定的实数对,使得恒成立,则称函数”.

1)判断函数是否是函数

2)若是一个函数,求出所有满足条件的有序实数对

3)若定义域为的函数-函数,且存在满足条件的有序实数对,当时,的值域为,求当时函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数上的单调性;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的左焦点为F,左顶点为A,已知,其中O为坐标原点,e为椭圆的离心率.

求椭圆C的方程;

是否存在斜率为的直线l,使得当直线l与椭圆C有两个不同交点MN时,能在直线上找到一点P,在椭圆C上找到一点Q,满足?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥

证明平面平面

当四棱锥的体积为且二面角为钝角时求直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在R上的函数,对任意的,恒有,且当, .

(1)的值;

(2)求证:对任意,恒有.

(3)求证:R上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.

某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列四个说法中,错误的选项有( ).

A.若函数上是单调增函数,在上也是单调增函数,则函数在R上是单调增函数

B.已知函数的解析式为,它的值域为,这样的函数有无数个

C.把函数的图像向右平移个单位长度,就得到了函数的图像

D.若函数为奇函数,则一定有

查看答案和解析>>

同步练习册答案