【题目】已知函数f(x)=loga(1﹣x)+loga(x+3)(a>0,且a≠1)
(1)求函数f(x)的定义域和值域;
(2)若函数 f(x)有最小值为﹣2,求a的值.
【答案】
(1)解:由 ,得﹣3<x<1,∴函数的定义域{x|﹣3<x<1},f(x)=loga(1﹣x)(x+3),
设t=(1﹣x)(x+3)=4﹣(x+1)2,∴t≤4,又t>0,则0<t≤4.
当a>1时,y≤loga4,值域为{y|y≤loga4}.
当0<a<1时,y≥loga4,值域为{y|y≥loga4}.
(2)解:由题设及(1)知:
当0<a<1时,函数有最小值,∴loga4=﹣2,解得 .
【解析】1、本题考查的是对数函数求定义域即真数大于零,复合函数求值域设t=(1﹣x)(x+3)=4﹣(x+1)2,可得t≤4,根据题意可得0<t≤4.对a分情况讨论当a>1时,y≤loga4,值域为{y|y≤loga4}.当0<a<1时,y≥loga4,值域为{y|y≥loga4}.
2、本题考查的是指对互化求值。
科目:高中数学 来源: 题型:
【题目】为贯彻落实教育部6部门《关于加快发展青少年校园足球的实施意见》,全面提高我市中学生的体质健康水平,培养拼搏意识和团队精神,普及足球知识和技能,市教体局决定举行春季校园足球联赛.为迎接此次联赛,甲中学选拔了20名学生组成集训队,现统计了这20名学生的身高,记录入如表:(设ξ为随机变量)
身高(cm) | 168 | 174 | 175 | 176 | 178 | 182 | 185 | 188 |
人数 | 1 | 2 | 4 | 3 | 5 | 1 | 3 | 1 |
(1)请计算这20名学生的身高的中位数、众数,并补充完成下面的茎叶图;
(2)身高为185cm和188cm的四名学生分别记为A,B,C,D,现从这四名学生选2名担任正副门将,请利用列举法列出所有可能情况,并求学生A入选门将的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 +y2=1(m>1)和双曲线 ﹣y2=1(n>0)有相同的焦点F1 , F2 , P是它们的一个交点,则△F1PF2的形状是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.随m,n的变化而变化
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中错误的个数为:( )
①y= 的图象关于(0,0)对称;
②y=x3+x+1的图象关于(0,1)对称;
③y= 的图象关于直线x=0对称;
④y=sinx+cosx的图象关于直线x= 对称.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2015年春,某地干旱少雨,农作物受灾严重,为了使今后保证农田灌溉,当地政府决定建一横断面为等腰梯形的水渠(水渠的横断面如图所示),为减少水的流失量,必须减少水与渠壁的接触面,若水渠横断面的面积设计为定值S,渠深为h,则水渠壁的倾斜角α(0<α< )为多大时,水渠中水的流失量最小?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2cosx(sinx+cosx),x∈R.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)求函数f(x)的单调递增区间;
(Ⅲ)求函数f(x)在区间[﹣ , ]上的最小值和最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com