精英家教网 > 高中数学 > 题目详情
9.圆C:x2+y2=1,直线l:y=kx+2,直线l与圆C交与A,B,若|$\overrightarrow{OA}$$+\overrightarrow{OB}$|<|$\overrightarrow{OA}$$-\overrightarrow{OB}$|(其中O为坐标原点),则k的取值范围是(  )
A.(0,$\sqrt{7}$)B.(-$\sqrt{7}$,$\sqrt{7}$)C.($\sqrt{7}$,+∞)D.($-∞,-\sqrt{7}$)$∪(\sqrt{7,}+∞)$

分析 根据向量的减法法则和向量数量积的运算性质,算出$\overrightarrow{OA}$•$\overrightarrow{OB}$<0,得∠AOB为钝角.由此可得圆心到直线的距离小于$\frac{\sqrt{2}}{2}$r(r为圆的半径),结合点到直线的距离公式列式,即可得到实数k的取值范围.

解答 解:∵|$\overrightarrow{OA}$$+\overrightarrow{OB}$|<|$\overrightarrow{OA}$$-\overrightarrow{OB}$|
∴平方得$\overrightarrow{OA}$•$\overrightarrow{OB}$<0,即|$\overrightarrow{OA}$||$\overrightarrow{OB}$|cos∠AOB<0
因此,∠AOB为钝角,
∵直线l与圆C交与A,B,
∴圆心到直线的距离小于$\frac{\sqrt{2}}{2}$r(r为圆的半径)
即$\frac{2}{\sqrt{{k}^{2}+1}}$<$\frac{\sqrt{2}}{2}$,
∴k<-$\sqrt{7}$或k>$\sqrt{7}$,
故选:D.

点评 本题给出直线与圆相交满足的向量不等式,求参数k的取值范围.着重考查了向量的数量积运算性质、直线与圆的位置关系和点到直线的距离公式等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.数列{an}的通项公式为an=(2n+1)•3n-1,则{an}的前7项和S7为(  )
A.36B.7×37C.-7×37D.14×37

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=x3+ax2-x+c(x∈R),下列结论错误的是(  )
A.函数f(x)一定存在极大值和极小值
B.若函数f(x)在(-∞,x1),(x2,+∞)上是增函数,则x2-x1≥$\frac{2\sqrt{3}}{3}$
C.函数f(x)的图象是中心对称图形
D.函数f(x)的图象在点(x0,f(x0))(x0∈R)处的切线与f(x)的图象必有两个不同的公共点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知直线2x+3y+6=0与圆x2+y2+2x-6y+m=0(其圆心为点C)交于A,B两点,若CA⊥CB,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.圆x2+y2-2x+4y-4=0上到直线x+y=8的距离最长的点的坐标为(1-$\frac{3}{2}$$\sqrt{2}$,-2-$\frac{3}{2}$$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}中,a1=1,且当x=$\frac{1}{2}$时,函数f(x)=$\frac{1}{2}$an•x2+(2-n-an+1)•x取得极值.
(1)若bn=2n-1•an,证明数列{bn}为等差数列;
(2)设数列cn=$\frac{1}{{b}_{n}•{b}_{n+1}}$,{cn}的前n项和为Sn,若不等式mSn<n+4(-1)n对任意的正整数n恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}的前n项和为Sn,且满足an+kSnSn-1=0(k>0,n≥2,n∈N*),a1=$\frac{1}{2}$.
(1)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列;
(2)若an+4Sn>0对任意正整数n恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知圆M的方程:x2+(y-2)2=1,直线l方程为x-2y=0,点P在直线l上,过点P做圆M的切线PA,PB,切点A,B.
(1)若∠APB=60°,试求点P的坐标.
(2)求四边形PAMB的面积的最小值与周长的最小值.
(3)求$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线y=kx-1与椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{a}=1$相切,则k,a的取值范围分别是(  )
A.a∈(0,1),k∈(-$\frac{1}{2}$,$\frac{1}{2}$)B.a∈(0,1],k∈(-$\frac{1}{2}$,$\frac{1}{2}$)
C.a∈(0,1),k∈(-$\frac{1}{2}$,0)∪(0,$\frac{1}{2}$)D.a∈(0,1),k∈(-$\frac{1}{2}$,$\frac{1}{2}$]

查看答案和解析>>

同步练习册答案