精英家教网 > 高中数学 > 题目详情

【题目】下列命题中错误的是

A. 若命题为真命题, 命题为假命题, 则命题“”为真命题

B. 命题“若,则”为真命题

C. 对于命题,则

D. ”是“”的充分不必要条件个

【答案】D

【解析】

由复合命题的真值表即可判断A;由原命题的逆否命题的真假,可判断B

由全称命题的否定为特称命题,可判断C;由二次方程的解法,结合充分必要条件的定义可判断D

若命题p为真命题,命题q为假命题,则¬q为真命题,

命题“p∨(¬q)”为真命题,故A正确;

命题“若x+y≠5,则x≠2或y≠3”的逆否命题为“若x=2且y=3,则x+y=5”为真命题,

可得原命题为真命题,故B正确;

命题px∈R,x2+x+1>0,则¬px0∈R,x02+x0+1≤0,故C正确;

x=1”可推得“x2﹣3x+2=0”,反之不成立,

x2﹣3x+2=0”是“x=1”的必要不充分条件,故D错误.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,已知直线,圆的圆心为,且经过点

1)求圆的方程;

2)若圆与圆关于直线对称,点分别为圆上任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.

(1)证明:ADPB.

(2)若PB=AB=PA=2,求三棱锥P-BCD的体积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量单位:万元)和收益单位:万元)的数据如下表

月份

广告投入量

收益

他们分别用两种模型①分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值

Ⅰ)根据残差图,比较模型①②的拟合效果,应选择哪个模型?并说明理由

Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除

ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程

ⅱ)若广告投入量时,该模型收益的预报值是多少

附:对于一组数据,……,其回归直线的斜率和截距的最小二乘估计分别为

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C:(a>0,b>0)的渐近线方程为y=±x,右顶点为(1,0).

(1)求双曲线C的方程;

(2)已知直线y=x+m与双曲线C交于不同的两点A,B,且线段AB的中点为,当x0≠0时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知高中学生的数学成绩与物理成绩具有线性相关关系,在一次考试中某班7名学生的数学成绩与物理成绩如下表:

数学成绩

88

83

117

92

108

100

112

物理成绩

94

91

108

96

104

101

106

1)求这7名学生的数学成绩的极差和物理成绩的平均数;

2)求物理成绩对数学成绩的线性回归方程;若某位学生的数学成绩为110分,试预测他的物理成绩是多少?

下列公式与数据可供参考:

用最小二乘法求线性回归方程的系数公式:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种新产品投放市场一段时间后,经过调研获得了时间(天数)与销售单价(元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图).

1.63

37.8

0.89

5.15

0.92

18.40

表中.

1)根据散点图判断,哪一个更适合作价格关于时间的回归方程类型?(不必说明理由)

2)根据判断结果和表中数据,建立关于的回归方程.

3)若该产品的日销售量(件)与时间的函数关系为,求该产品投放市场第几天的销售额最高?最高为多少元?

附:对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且存在不同的实数x1x2x3,使得fx1=fx2=fx3),则x1x2x3的取值范围是(  )

A. B. C. D.

查看答案和解析>>

同步练习册答案